Skip to main content
Log in

Identification of a New Rice Low-Tiller Mutant and Association Analyses Based on the SLAF-seq Method

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

By studying the regulatory mechanism by which rice tillers are controlled, many rice mutants were described as providing important insights into the investigation of tillering control. In this study, we surveyed a new rice mutant produced by ethyl methane sulfonate induction, designated as Oryza sativa low-tiller 1 (oslt1), which had been planted to the fourth generation and proved to stably inherit the low-tillering trait. The statistical analysis of the number of tillers in oslt1 showed that there was a significant lack of tillering in the mutant lines, with the average number being 2.33 as opposed to 8.00 in wild-type plants. The data from a series of crossed populations, including F2 populations produced by selfing of the offspring of oslt1 × ptb and backcross populations of the F1 generation × oslt1, indicated that a single recessive gene controlled the low-tillering trait. To locate the recessive gene, the crossed population in the F2 generation from two parents, oslt1 and Peiai 64, was constructed and the population was used for bulked segregate analysis based on specific locus amplified fragment-sequencing (SLAF-seq) method. The results showed that approximately 100 differential markers were procured by analyzing 7437 polymorphic SLAFs and 1 primary region associated with low-tillering characteristics located on Chr12. In the associated regions, there were 34 candidate genes of 0.24 Mb that might be related to the number of low tillers in oslt1 plants. All of these results are necessary for further fine mapping for this low tillering-related gene. In addition, these identified SLAF-tags will be valuable for marker-assisted selection in rice breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES (2000) An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407:513–516

    Article  CAS  PubMed  Google Scholar 

  • Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama Morita T, Stern DL (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibar H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    Article  CAS  PubMed  Google Scholar 

  • Arite T, Umehara M, Ishikawa S, Hanada A, Maekawa M, Yamaguchi S, Kyozuka J (2009) D14, a strigolactone–insensitive mutant of rice, shows an accelerated outgrowth of tillers. Plant Cell Physiol 50:1416–1424

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  CAS  PubMed  Google Scholar 

  • Chen SQ, Huang ZF, Dai Y, Qin SW, Gao YY, Zhang LL, Gao Y, Chen JM (2013) The development of 7E chromosome–specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One 8:e65122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yao JB, Chu L, Li Y, Guo XG, Zhang YS (2014) The development of specific SNP markers for chromosome 14 in cotton using next-generation sequencing. Plant Breed 133:256–261

    Article  CAS  Google Scholar 

  • Davey JW, Blaxter ML (2010) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gachomo EW, Jimenez-Lopez JC, Baptiste LJ, Kotchoni SO (2014) GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana. BMC Plant Biol 14:1–17

    Article  Google Scholar 

  • Gao ZY, Qian Q, Liu XH, Yan MX, Feng Q, Dong GJ, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71:265–276

    Article  CAS  PubMed  Google Scholar 

  • Guo SY, Xu YY, Liu HH, Mao ZW, Zhang C, Ma Y, Zhang QR, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1modulates rice tillering via DWARF14. Nat Commun 4:1566–1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamiaux C, Drummond RS, Janssen BJ, Ledger SE, Cooney JM, Newcomb RD, Snowden KC (2012) DAD2 is an alpha/beta hydrolase likely to be involved in the perception of the plant branching hormone, strigolactone. Curr Biol 22:1–5

    Article  Google Scholar 

  • Huang XH, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan JP, Fan DL, Weng QJ, Huang T, Dong GJ, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Kitahata N, Umehara M, Hanada A, Kato A, Ueno K, Mashiguchi K, Kyozuka J, Yoneyama K, Yamaguchi S, Asami T (2010) A new lead chemical for strigolactone biosynthesis inhibitors. Plant Cell Physiol 51:1143–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XY, Qian Q, Fu ZM, Wang YH, Xiong GS, Zeng DL, Wang XQ, Liu XF, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY (2003) Control of tillering in rice. Nature 422(6932):618–621

    Article  CAS  PubMed  Google Scholar 

  • Liang WH, Shang F, Lin QT, Lou C, Zhang J (2014) Tillering and panicle branching genes in rice. Gene 537:1–5

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Wang RX, Qian Q, Yan MX, Meng XB, Fu ZM, Yan CY, Jiang B, Su Z, Li JY, Wang YH (2009) DWARF27 an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin QB, Wang D, Dong H, Gu SH, Cheng ZJ, Gong J, Qin RZ, Jiang L, Li G, Wang JL, Wu FQ, Guo XP, Zhang X, Lei CL, Wang HY, Wan JM (2012) Rice APC/C(TE) controls tillering by mediating the degradation of MONOCULM 1. Nat Commun 20:752

    Article  Google Scholar 

  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurtsa R (2011) Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell 23:3853–3865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S, Kyozuka J (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51:1127–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabiger DS, Drews GN (2013) MYB64 and MYB119 are required for cellularization and differentiation during female gametogenesis in Arabidopsis thaliana. Plos Genetics 9:e1003783–e1003783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souer E, Houwelingen AV, Kloos D, Mol J, Koes R (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  CAS  PubMed  Google Scholar 

  • Stirnberg P, van de Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    CAS  PubMed  Google Scholar 

  • Sun FL, Zhang WP, Xiong GS, Yan MX, Qian Q, Li JY, Wang YH (2010) Identification and functional analysis of the MOC1 interacting protein. J Genet Genomics 37:69–77

    Article  CAS  PubMed  Google Scholar 

  • Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP, Xu CH, Song J, Huang L, Wang CM, Shi JJ, Wang R, Zheng XH, Lu CY, Wang XW, Zheng HK (2013) SLAF-seq: an efficient method of large–scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu–Sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang XH, Yoshida H, Kyozuka J, Chen F, Sato Y (2011) LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23:3276–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi–Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Li JY (2010) Branching in rice. Plant Biol 14:1–6

    Article  Google Scholar 

  • Xia C, Chen LL, Rong TZ, Li R, Xiang Y, Wang P, Liu CH, Dong XQ, Liu B, Zhao D (2015) Identification of a new maize inflorescence meristem mutant and association analysis using SLAF–seq method. Euphytica 202:35–44

    Article  Google Scholar 

  • Xu C, Wang YH, Yu YC, Duan JB, Liao ZG, Xiong GS, Meng XB, Liu GF, Qian Q, Li JY (2012) Degradation of MONOCULM 1 by APC/C(TAD1) regulates rice tillering. Nat Commun 20:750

    Article  Google Scholar 

  • Yan HF, Saika H, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M (2007) Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness–induced senescence or hydrogen peroxide-induced cell death. Genes Genet Syst 82:361–366

    Article  CAS  PubMed  Google Scholar 

  • Zhang SY, Li G, Fang J, Chen WQ, Jiang HP, Zou JH, Liu X, Zhao XF, Li XB, Chu CG, Xie Q, Jiang XN, Zhu LH (2010) The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. Journal of Integrative Plant Biol 52:626–638

    CAS  Google Scholar 

  • Zhang ZY, Li JJ, Yao GX, Zhang HL, Dou HJ, Shi HL, Sun XM, Li ZC (2011) Fine mapping and cloning of the grain number per-panicle gene (Gnp4) on chromosome 4 in rice (Oryza sativa L). J Integr Agr 10:1825–1833

    CAS  Google Scholar 

  • Zou JH, Chen ZX, Zhang SY, Zhang WP, Jiang GH, Zhao XF, Zhai WX, Pan XB, Zhu LH (2005) Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L). Planta 222:604–612

    Article  CAS  PubMed  Google Scholar 

  • Zou JH, Zhang SY, Zhang WP, Li G, Chen ZX, Zhai WX, Zhao XF, Pan XB, Xie Q, Zhu LH, The rice (2006) HIGH–TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–698

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Genetically Modified Organisms Breeding Major Projects of China (2014ZX08010-003 and 2016ZX08010-003) and the Guizhou Science and Technology Major Project (2012 6005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Gang Zhao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig 1

The aa and ab ratio on each chromosome. (DOCX 4953 kb)

Supplementary Fig 2

Segregation of SSR Marker (RM 27601) in oslt1 × Peiai 64 F2 populations. (DOCX 102 kb)

Supplementary Table 1

The information of associated SLAF Markers: SLAF16002, SLAF16015 and SLAF16030. (DOCX 17 kb)

Supplementary Table 2

The Annotation and Regulation of Candidate Genes. (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zeng, XF., Zhao, YC. et al. Identification of a New Rice Low-Tiller Mutant and Association Analyses Based on the SLAF-seq Method. Plant Mol Biol Rep 35, 72–82 (2017). https://doi.org/10.1007/s11105-016-1002-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-1002-2

Keywords

Navigation