Skip to main content
Log in

Wheat microRNA Member TaMIR444a Is Nitrogen Deprivation-Responsive and Involves Plant Adaptation to the Nitrogen-Starvation Stress

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) are involved in regulating various plant developmental processes and mediating plant-adaptive responses to nutrient deprivation. In this study, the characterization of a wheat miRNA member TaMIR444a and the role of this miRNA in mediating plant tolerance to the N-starvation stress were investigated. Results indicated that the expression levels of TaMIR444a and NtMIR444a, the homologue of TaMIR444a in tobacco, were upregulated in roots and leaves under N deprivation, whereas the transcription of their target genes showed reverse expression patterns in above tissues. These results suggest that miR444a is conserved across plant species of dicots and monocots and can possibly establish the miRNA/target modules for mediating plant response to N deficiency. Overexpression of TaMIR444a in tobacco improved the plant growth feature, biomass, N content, photosynthetic parameters, and antioxidant enzymatic activities under N deprivation. Based on microarray analyses, a large number of genes were identified to be differentially expressed in the TaMIR444a-overexpressing plants; these differential genes are categorized into functional groups of signal perception and transduction, transcription regulation, primary and secondary metabolism, phytohormone response, cellular protection and defensive responsiveness, etc. qPCR analyses revealed that the nitrate transporter (NRT) genes NtNRT1.1-s, NtNET1.1-t, and NtNRT2.1 and the antioxidant enzyme genes (AEEs) NtCAT1;1, NtPOD1;3, and NtPOD4 were significantly upregulated by TaMIR444a, suggesting that the altered transcription of these NRT and AEE genes is associated with the improvement of the N acquisition and the cellular ROS detoxification in the N-deprived transgenic plants. Together, our findings demonstrate that miR444a acts as one critical regulator in mediating plant tolerance to the N-starvation stress through modulation of the regulatory networks associated with N acquisition, cellular ROS homeostasis, and carbon assimilation. Our findings have provided insights into the mechanisms of plant tolerance to N deficiency mediated by the distinct miRNA pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asha S, Nisha J, Soniya EV (2013) In silico characterization and phylogenetic analysis of two evolutionarily conserved miRNAs (miR166 and miR171) from black pepper (Piper nigrum L.). Plant Mol Biol Rep 31, DOI 10.1007/s11105-012-0532-5

  • Bari R, Datt PB, Stitt M, Scheible WR (2006) PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai H, Xie W, Lian X (2013) Comparative analysis of differentially expressed genes in rice under nitrogen and phosphorus starvation stress conditions. Plant Mol Biol Rep 31:160–173

    Article  CAS  Google Scholar 

  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E et al (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57:426–435

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Article  Google Scholar 

  • Dozmorov I, Centola M (2003) An associative analysis of gene expression array data. Bioinform 19:204–211

    Article  CAS  Google Scholar 

  • Frink CR, Waggoner PE, Ausubel JH (1999) Nitrogen fertilizer: retrospect and prospect. Proc Natl Acad Sci USA 96:1175–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DGJ, Stewart JCN, Tang Y, Wang ZY (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechn J 10:443–452

    Article  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Filleur S, Rahman A (2005) Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana. Planta 222:730–742

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc Natl Acad Sci USA 105:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo C, Li J, Chang W, Zhang L, Cui X, Xiao K (2011) Effects of chromosome substitution on the utilization efficiency of nitrogen, phosphorus, and potassium in wheat. Front Agric China 5(3):253–261

    Article  Google Scholar 

  • Guo C, Zhao X, Liu X, Zhang L, Gu J, Li X, Lu W, Xiao K (2013) Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. Planta 237:1163–1178

    Article  CAS  PubMed  Google Scholar 

  • Hirel B, LeGouis J, Ney B, Gallais A (2007) The challenge of imp roving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Ho CH, Tsay YF (2010) Nitrate, ammonium, and potassium sensing and signaling. Curr Opin Plant Biol 13:604–610

    Article  CAS  PubMed  Google Scholar 

  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) CHL1 function as a nitrate sensor in plants. Cell 138:1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Li W, Hu D, Shi X, Zhang X, Zhang F, Fu Z, Ding D, Liu Z, Tang J (2015) Biological responses and proteomic changes in maize seedlings under ntrogen deficiency. Plant Mol Biol Rep 33:490–504

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Ann Rev Plant Biol 57:19–53

    Article  CAS  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL et al (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106:3041–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakakibara H et al (2012) The Arabidopsis nitrate transporter NR T2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24:245–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang Y, Okamoto M, Crawford NM, Siddiqi MY, Glass ADM (2007) Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol 143:425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Qin Y, Duan H, Yin W, Xia X (2011) Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot 62:3765–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang YC, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhao X, Zhang L, Lu W, Li X, Xiao K (2013) TaPht1c4, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), plays an important role in plant phosphate acquisition under phosphorus deprivation. Funct Plant Biol 40:329–341

    Article  CAS  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation ofArabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mica E, Gianfranceschi L, Enrico P`M (2006) Characterization of five microRNA families in maize. J Exp Bot 57:2601–2612

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Orsel M, Krapp A, Daniel-Vedele F (2002) Analysis of the NRT2 nitrate transporter family in Arabidopsis: structure and gene expression. Plant Physiol 129:886–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150:1541–1555

    Article  PubMed  PubMed Central  Google Scholar 

  • Remans T, Nacry P, Pervent M (2006) The Arabidopsis NRT1.1 transporter participates in the signaling pathway triggering root colonization of nitrate-rich patches. Proc Natl Acad Sci USA 103:19206–19211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001) Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. Physiol Plant 112:487–494

    Article  CAS  PubMed  Google Scholar 

  • Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Muller C, Matt P, Gibon Y, Carillo P, Morcuende R, Scheible WR, Krapp A (2002) Steps towards an integrated view of nitrogen metabolism. J Exp Bot 53:959–970

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Ding C, Li X, Xiao K (2012) Molecular characterization and expression analysis of TaZFP15, a C2H2- type zinc finger transcription factor gene in wheat (Triticum aestivum L.). J Integr Agric 11:31–42

    Article  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal E, Gutiérrez RA (2008) A systems view of nitrogen nutrient and metabolite responses in Arabidopsis. Curr Opin Plant Biol 11:521–529

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Liu D, Crawford NM (1998) The Arabidopsis CHL1 protein plays a major role in high-affinity nitrate uptake. Proc Natl Acad Sci USA 95:15134–15139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expres-sion patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RC, Okamoto M, Xing XJ, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fu B, Pan L, Chen L, Fu X, Li K (2013) Overexpression of Arabidopsis Dof1, GS1, and GS2 enhanced nitrogen assimilation in transgenic tobacco grown under low-nitrogen conditions. Plant Mol Biol Rep 31:886–900

    Article  CAS  Google Scholar 

  • Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC (2005) Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Dev 132:3657–3668

    Article  CAS  Google Scholar 

  • Wong C, Zhao YT, Wang XJ, Croft L, Wang ZH, Haerizadeh F, Mattick JS, Singh MB, Carroll BJ, Bhalla PL (2011) MicroRNAs in the shoot apical meristem of soybean. J Exp Bot 62:2495–2506

    Article  CAS  PubMed  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Dev 133:4211–4218

    Article  CAS  Google Scholar 

  • Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol 158:1382–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101:7833–7838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Zhu JK, Zhang F, Li WX (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190:906–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Liu X, Guo C, Gu J, Xiao K (2013) Identification and characterization of microRNAs from wheat (Triticum aestivum L.) under phosphorus deprivation. J Plant Biochem Biotechn 22:113–123

    Article  CAS  Google Scholar 

  • Zhao C, Xia H, Cao T, Yang Y, Zhao S, Hou L, Zhang Y, Li C, Zhang X, Wang X (2014) Small RNA and degradome deep sequencing reveals peanut microRNA roles in response to pathogen infection. Plant Mol Biol Rep 32, DOI 10.1007/s11105-014-0806-1

  • Zhao Y, Guo C, Li X, Duan W, Ma C, Guo L, Wen Y, Lu W, Xiao K (2015) Characterization and expression pattern analysis of microRNAs in wheat (Triticum aestivum L.) under drought stress. Biol Plant 59:37–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xiao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This study was funded by the National Natural Science Foundation of China (nos. 31371618 and 31571664), the National Transgenic Major Program of China (no. 2011ZX08008), and the Key Laboratory of Crop Growth Regulation of Hebei Province.

Additional information

Si Gao and Chengjin Guo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Alignment of precursor sequences of TaMIR444a and its tobacco homologue NtMIR444a (DOC 120 kb)

Fig. S2

Expression patterns of TaMIR444 and NtMIR444a in roots and leaves of wheat and tobacco under the N-sufficient and -deficient conditions detected by semiquantitative RT-PCR (DOC 225 kb)

Fig. S3

Expression patterns of TaMIR444a and NtMIR444a in response to longer N deprivation treatment (DOC 28 kb)

Fig. S4

Molecular characterization of the transgenic tobacco plants (DOC 146 kb)

Fig. S5

Expression patterns of the randomly selected upregulated and downregulated genes detected by microarray analyses (DOC 880 kb)

Table S1

Primers used for gene expression analysis of TaMIR444a and NtMIR444a, their interacting target genes, the internal standard tubulin genes as well as for the selection gene bar (DOC 37 kb)

Table S2

Primers used for gene expression analysis of the randomly selected differential genes in the microarray analysis (DOC 44 kb)

Table S3

Primers used for expression analyses of the tobacco NRT, SOD, CAT, and POD genes (DOC 48 kb)

Table S4

The differentially upregulated genes by TaMIR444a (XLS 286 kb)

Table S5

The differentially downregulated genes by TaMIR444a (XLS 291 kb)

Table S6

Functional groups of the differentially upregulated genes by TaMIR444a (XLS 58 kb)

Table S7

Functional groups of the differentially downregulated genes by TaMIR444a (XLS 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Guo, C., Zhang, Y. et al. Wheat microRNA Member TaMIR444a Is Nitrogen Deprivation-Responsive and Involves Plant Adaptation to the Nitrogen-Starvation Stress. Plant Mol Biol Rep 34, 931–946 (2016). https://doi.org/10.1007/s11105-016-0973-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-016-0973-3

Keywords

Navigation