Skip to main content
Log in

Aquaporins in Boron-Tolerant Barley: Identification, Characterization, and Expression Analysis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Barley is an economically important crop widely cultivated in the world. Boron (B) toxicity limits its yield in a variety of regions worldwide. B-tolerant cultivar of barley (Hordeum vulgare, cv Sahara) maintains low B in their roots and leaves in B-toxic conditions and able to resist against it. B import and export to the plant is controlled by several transmembrane proteins such as aquaporins (AQP), which are key players not just for water uptake, but also a wide selection of substrates including B. In this study, we identified and characterized AQPs from B-tolerant barley to understand their possible positive impact in B-toxicity tolerance. In order to filter out the AQP genes, we have mined the RNA-Seq data obtained from barley roots and leaves which are B-stressed and control in this study. A total of 30 AQP were identified within four subfamilies: plasma membrane intrinsic proteins (PIPs) (13), tonoplast intrinsic proteins (TIPs) (11), NOD26-like intrinsic proteins (NIPs) (4), and small basic intrinsic proteins (SIPs) (2). Differential expression was measured in barley AQP transcripts upon excess B treatment. Contribution of each AQP member to B-tolerance was evaluated. Particularly, NIP1:1 was found to be highly up-regulated in roots, in contrast down-regulated in leaf, indicating plasma membrane and vacuole cooperated control of B-regulation. In addition to NIP2:1, NIP2:2 expression was found to be reduced that may contribute to B-toxicity tolerance. Moreover, comparative phylogenetic analysis was conducted using diverse plant AQP members. Comprehensive evaluation of conserved domains, critical residues, and 3D models give insights about the substrate selectivity and passage capability of barley AQPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555(1):72–78

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI–BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Apweiler R, Attwood TK, Bairoch A et al (2001) The interpro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res 29:37–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besse M, Knipfer T, Miller AJ, Verdeil JL, Jahn TP, Fricke W (2011) Developmental pattern of aquaporin expression in barley (Hordeum vulgare L) leaves. J Exp Bot: err175

  • Chaumont F, Barrieu E, Wojcik MJ, Chrispeels R (2001) Aquaporins constitutes a large and highly divergent protein family in maize. Plant Physiol 125:1206–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumont F, Moshelion M, Daniels MJ (2005) Regulation of plant aquaporin activity. Biol Cell 97:749–764

    Article  CAS  PubMed  Google Scholar 

  • Danielson J, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Durbak AR, Phillips KA, Pike S, O’Neill MA, Mares J, Gallavotti A et al (2014) Transport of boron by the tassel–less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell Online 26(7):2978–2995

    Article  CAS  Google Scholar 

  • Froger A, Thomas D, Delamarche C, Tallur B (1998) Prediction of functional residues in water channels and related proteins. Protein Sci 7(6):1458–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan XG, Su WH, Yi F, Zhang D, Hao F, Zhang HG et al (2010) NPA motifs play a key role in plasma membrane targeting of aquaporin‐4. IUBMB Life 62(3):222–226

    Article  CAS  PubMed  Google Scholar 

  • Gupta AB, Verma RK, Agarwal V, Vajpai M, Bansal V, Sankararamakrishnan R (2012) MIPModDB: a central resource for the superfamily of major intrinsic proteins. Nucleic Acids Res 40:D362–D369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes JE, Reid RJ (2004) Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol 136:3376–3382

  • Heymann JB, Engel A (1999) Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol Sci 14:187–193

    CAS  PubMed  Google Scholar 

  • Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ et al (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587

    Article  PubMed  PubMed Central  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L et al (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126(4):1358–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones R, Ougham H, Thomas H, Waaland S (2012) The molecular life of plants. Wiley, New York

    Google Scholar 

  • Kato Y, Miwa K, Takano J, Wada M, Fujiwara T (2009) Highly boron deficiency tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol 50:58–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuhara M, Hanba YT (2008) Barley plasma membrane intrinsic proteins (PIP Aquaporins) as water and CO2 transporters. Pflügers Arch 456:687–691

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  • Knipfer T, Besse M, Verdeil JL, Fricke W (2011) Aquaporin-facilitated water uptake in barley (Hordeum vulgare L) roots. J Exp Bot 62(12):4115–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:302–305

    Article  Google Scholar 

  • Ligaba A, Katsuhara M, Shibasaka M, Djira G (2011) Abiotic stresses modulate expression of major intrinsic proteins in barley (Hordeum vulgare). C R Biol 334(2):127–139

    Article  CAS  PubMed  Google Scholar 

  • Loomis WD, Durst RW (1992) Chemistry and biology of boron. BioFactors 3:229–239

    CAS  PubMed  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  CAS  PubMed  Google Scholar 

  • Möller S, Croning MD, Apweiler R (2001) Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17(7):646–653

    Article  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J et al (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37(6):389–397

    Article  CAS  PubMed  Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L). BMC Plant Biol 10(1):142

    Article  PubMed  PubMed Central  Google Scholar 

  • Rasheed-Depardieu C, Parent C, Crèvecoeur M, Parelle J, Tatin-Froux F, Le Provost G et al (2012) Identification and expression of nine oak aquaporin genes in the primary root axis of two oak species, Quercus petraea and Quercus robur. PLoS One 7(12):e51838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai JF, Ishikawa T, Yamaguchi M, Uemura, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD et al (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suga S, Maeshima M (2004) Water channel activity of radish plasma membrane aquaporins heterologously expressed in yeast and their modification by site-directed mutagenesis. Plant Cell Physiol 45:823–830

    Article  CAS  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis thaliana. Plant Cell 20:2860–2875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tombuloglu H, Semizoglu N, Sakcali S, Kekec G (2012) Boron induced expression of some stress-related genes in tomato. Chemosphere 86(5):433–438

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu H, Kekec G, Sakcali MS, Unver T (2013) Transcriptome-wide identification of R2R3-MYB transcription factors in barley with their boron responsive expression analysis. Mol Genet Genomics 288(3–4):141–155

    Article  CAS  PubMed  Google Scholar 

  • Tombuloglu G, Tombuloglu H, Sakcali MS, Unver T (2015) High-throughput transcriptome analysis of barley (Hordeum vulgare) exposed to excessive boron. Gene 557(1):71–81

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinfor 13:134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Scientific and Technological Research Council of Turkey (TUBITAK) (grant no: 111T015).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Tombuloglu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Amino acid sequences of barley AQPs (TXT 7 kb)

Online Resource 2

Critical residues characterized in AQP members (DOCX 584 kb)

Online Resource 3

Percent identity matrix analysis of HvAQPs (GIF 241 kb)

High Resolution Image (TIFF 99 kb)

Online Resource 4

Comparative phylogenetic analysis of barley, Arabidopsis, maize and rice AQP members (GIF 123 kb)

High Resolution Image (TIFF 35720 kb)

Online Resource 5

Nucloetide sequences of barley AQPs (TXT 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tombuloglu, H., Ozcan, I., Tombuloglu, G. et al. Aquaporins in Boron-Tolerant Barley: Identification, Characterization, and Expression Analysis. Plant Mol Biol Rep 34, 374–386 (2016). https://doi.org/10.1007/s11105-015-0930-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0930-6

Keywords

Navigation