Skip to main content
Log in

Overexpression of the Gibberellin 2-Oxidase Gene from Camellia lipoensis Induces Dwarfism and Smaller Flowers in Nicotiana tabacum

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Gibberellins (GAs) are plant hormones that control many aspects of plant growth and development. Gibberellin 2-oxidase plays an important role in determining the level of bioactive GAs. In this study, we isolated three GA2ox genes (ClGA2ox1-3) from Camellia lipoensis Chang et Xu. The results of a quantitative real-time reverse transcription polymerase chain reaction analysis indicated that ClGA2ox1-3 may play a tissue-specific role in plant development. The transcript of ClGA2ox1 was more abundant in the stem and apex, ClGA2ox2 was highly expressed in mature leaves, and ClGA2ox3 was more abundant in roots. We produced transgenic plants of Nicotiana tabacum L. by overexpressing the ClGA2ox1-3 genes. Plants with overexpressed ClGA2ox1 or ClGA2ox3 genes exhibited dwarf phenotypes, including reduced growth, delayed flowering, and smaller, rounder, and darker green leaves. All of the transgenic plants overexpressing the ClGA2ox1 gene bloomed normally, but their flowers were half the size of the control plants. Plants overexpressing ClGA2ox3 could be categorized into two classes: moderately dwarfed and severely dwarfed. The ClGA2ox2 gene had little effect on the morphological characterization of transgenic plants. Quantitative real-time PCR analysis showed that the ClGA2ox3 expression level was generally correlated with the level of dwarfism. The endogenous level of bioactive GA4 and GA1 largely decreased in transgenic plants and was generally correlated with the degree of dwarfism in transgenic plants with the ClGA2ox1 or ClGA2ox3 gene. The application of GA3 rescued the dwarf phenotype of transformants, indicating that the GA signaling pathway might function normally in transgenic plants. Therefore, morphological changes in transgenic plants may result from a decrease in the endogenous level of bioactive GAs. Additionally, the possibility of molecular breeding for plant form alternation in Camellia plants by genetically engineering the GA metabolic pathway is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Busov VB, Meilan R, Pearce DW, Ma C, Rood SB, Strauss SH (2003) Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol 132:1283–1291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daviere JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  CAS  PubMed  Google Scholar 

  • El-Sharkawy I, El Kayal W, Prasath D, Fernandez H, Bouzayen M, Svircev AM, Jayasankar S (2012) Identification and genetic characterization of a gibberellin 2-oxidase gene that controls tree stature and reproductive growth in plum. J Exp Bot 63:1225–1239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleet CM, Sun T-P (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Tang D, Shen Y, Qin B, Hong L, You A, Li M, Wang X, Yu H, Gu M, Cheng Z (2010) Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics 37:23–36

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Lee I, Kim K, Kim D, Na H, Lee I-J, Kang S-M, Jeon H-W, Le P, Ko J-H (2014) Expression of gibberellin 2-oxidase 4 from Arabidopsis under the control of a senescence-associated promoter results in a dominant semi-dwarf plant with normal flowering. J Plant Biol 57:106–116

    Article  CAS  Google Scholar 

  • Martin DN, Proebsting WM, Hedden P (1999) The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiol 121:775–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishii K, Ho M-J, Chou Y-W, Gabotti D, Wang C-N, Spada A, Möller M (2014) GA2 and GA20-oxidase expressions are associated with the meristem position in Streptocarpus rexii (Gesneriaceae). Plant Growth Regul 72:123–140

    Article  CAS  Google Scholar 

  • Niu S, Li Z, Yuan H, Fang P, Chen X, Li W (2013) Proper gibberellin localization in vascular tissue is required to regulate adventitious root development in tobacco. J Exp Bot 64:3411–3424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14:61–80

    Google Scholar 

  • Otani M, Meguro S, Gondaira H, Hayashi M, Saito M, Han D-S, Inthima P, Supaibulwatana K, Mori S, Jikumaru Y, Kamiya Y, Li T, Niki T, Nishijima T, Koshioka M, Nakano M (2013) Overexpression of the gibberellin 2-oxidase gene from Torenia fournieri induces dwarf phenotypes in the liliaceous monocotyledon Tricyrtis sp. J Plant Physiol 170:1416–1423

    Article  CAS  PubMed  Google Scholar 

  • Peters RJ (2013) Gibberellin phytohormone metabolism. In: Rohmer M, Bach TJ (eds) Isoprenoid synthesis in plants and microorganisms. Springer, New York, pp 233–249

    Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford N, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–1057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plackett ARG, Powers SJ, Fernandez-Garcia N, Urbanova T, Takebayashi Y, Seo M, Jikumaru Y, Benlloch R, Nilsson O, Ruiz-Rivero O, Phillips AL, Wilson ZA, Thomas SG, Hedden P (2012) Analysis of the developmental roles of the Arabidopsis gibberellin 20-oxidases demonstrates that GA20ox1, −2, and −3 are the dominant paralogs. Plant Cell 24:941–960

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Biol 51:501–531

    Article  CAS  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  CAS  PubMed  Google Scholar 

  • Sakai M, Sakamoto T, Saito T, Matsuoka M, Tanaka H, Kobayashi M (2003) Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins. J Plant Res 116:161–164

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508–1516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh DP, Jermakow AM, Swain SM (2002) Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14:3133–3147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A 99:9043–9048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sriskandarajah S, Mibus H, Serek M (2007) Transgenic Campanula carpatica plants with reduced ethylene sensitivity. Plant Cell Rep 26:805–813

    Article  CAS  PubMed  Google Scholar 

  • Stewart CN Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques 14:748–750

    CAS  PubMed  Google Scholar 

  • Sun T-P (2008) Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book/American Society of Plant Biologists 6:e0103

  • Sun T-P, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci 96:4698–4703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Ren B, Zhang XM, Wang Y, Wei CH, Li Y (2010) Stable expression of rice dwarf virus Pns10 suppresses the post-transcriptional gene silencing in transgenic Nicotiana benthamiana plants. Acta Virol 54:99–104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science & Technology Pillar Program during the 12th Five-year Plan Period (No. 2012BA01B0703) and International Cooperation in Science and Technology Project (No. 2011DFA30490). We also acknowledge Breeding New Flower Varieties Program of Zhejiang Province (2012C12909-6) and State Forestry Administration of the People’s Republic of China, Project 948 (2014-4-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyuan Li.

Additional information

Zheng Xiao and Ruipeng Fu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Comparison of the deduced amino acid sequences of ClGA2ox1-3 with other GA2oxs. The closed triangles indicate the three amino acid residues forming the iron-binding site. The asterisks show the putative 2-oxoglutarate binding site. The GenBank accession numbers for each protein are ClGA2ox1 (KJ502290), ClGA2ox2 (KJ502289), ClGA2ox3 (KJ502291), AtGA2ox1 (CAB41007), OsGA2ox3 (BAC16752) and PtGA2ox1 (EEE85235). (GIF 182 kb)

High Resolution Image (TIFF 381 kb)

Table S1

Primers used for amplifying GA2ox gene fragment (DOC 30 kb)

Table S2

Primers used for RT-PCR analysis (DOC 31 kb)

Table S3

Primers used for quantitative real-time PCR (DOC 29 kb)

Table S4

Detective primers for southern blot (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Fu, R., Li, J. et al. Overexpression of the Gibberellin 2-Oxidase Gene from Camellia lipoensis Induces Dwarfism and Smaller Flowers in Nicotiana tabacum . Plant Mol Biol Rep 34, 182–191 (2016). https://doi.org/10.1007/s11105-015-0917-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0917-3

Keywords

Navigation