Skip to main content
Log in

Molecular Cloning and Characterization of Two Genes Encoding Tryptophan Decarboxylase from Aegilops variabilis with Resistance to the Cereal Cyst Nematode (Heterodera avenae) and Root-Knot Nematode (Meloidogyne naasi)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Tryptophan decarboxylase (TDC), which catalyzes the conversion of Trp to tryptamine, provides a common backbone for many secondary metabolites, and is important in defending plants from abiotic stress such as pathogen infection and insect attack. In this study, we cloned two TDC genes, AeVTDC1 and AeVTDC2, from Ae. variabilis accession No. 1 with resistance to cereal cyst nematode (CCN) and root-knot nematode (RKN). AeVTDC1 and AeVTDC2 encode polypeptides of 510 and 518 amino acids, respectively, and both have a pyridoxal phosphate attachment site and specific catalytic residues. Comparative analyses of gene structure and amino acid motifs revealed that TDCs are highly conserved crossing the analyzed species in monocots and dicots. Phylogenetic analysis indicated that AeVTDCs were closer to TDCs of wheat, Ae. tauschii, Triticum urartu, Brachypodium distachyon, and Hordeum vulgare. Their functions and temporal and spatial expression patterns were investigated. Moreover, AeVTDC1 and AeVTDC2 exhibited different expression responses to the phytohormones abscisic acid, salicylic acid, and methyl jasmonate, suggesting that they may function differently in response to biotic and abiotic stresses. The inhibition of TDC activity with S-αFMT resulted in susceptibility of Ae. variabilis to CCN and RKN, suggesting that TDCs may play important roles in resistance to nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad F, Rather MA, Siddiqui MA (2010) Nematicidal activity of leaf extracts from Lantana camara L. against Meloidogyne incognita (kofoid and white) chitwood and its use to manage roots infection of Solanum melongena L. Braz Arch Biol Technol 53(3):543–548

    Article  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(suppl 2):W369–W373. doi:10.1093/nar/gkl198

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balbi V, Devoto A (2008) Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177(2):301–318. doi:10.1111/j.1469-8137.2007.02292.x

    Article  CAS  PubMed  Google Scholar 

  • Barloy D, Lemoine J, Abelard P, Tanguy AM, Rivoal R, Jahier J (2007) Marker-assisted pyramiding of two cereal cyst nematode resistance genes from Aegilops variabilis in wheat. Mol Breed 20(1):31–40. doi:10.1007/s11032-006-9070-x

    Article  CAS  Google Scholar 

  • Branch C, Hwang CF, DA Navarre WV (2004) Salicylic acid is part of the Mi-1-mediated defense response to root-knot nematode in tomato. Mol Plant Microbe Interact 17:351–356

    Article  CAS  PubMed  Google Scholar 

  • Cooper WR, Jia L, Goggin L (2005) Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. J Chem Ecol 31:1953–1967

    Article  CAS  PubMed  Google Scholar 

  • Coriton O, Barloy D, Huteau V, Lemoine J, Tanguy A-M, Jahier J (2009) Assignment of Aegilops variabilis Eig chromosomes and translocations carrying resistance to nematodes in wheat. Genome 52(4):338–346. doi:10.1139/G09-011

    Article  CAS  PubMed  Google Scholar 

  • Di Fiore S, Li Q, Leech MJ, Schuster F, Emans N, Fischer R, Schillberg S (2002) Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype. Plant Physiol 129(3):1160–1169

    Article  PubMed Central  PubMed  Google Scholar 

  • Eastwood RF, Lagudah ES, Appels R (1994) A directed search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tauschii. Genome 37:311–319

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ, Huber-Allanach KL, Tari LW (2000) Plant aromatic l-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications. Phytochemistry 54(2):121–138

  • Ferraz LC, Brown D (2002) An introduction to nematodes, plant nematology. Sofia, Bulgaria

  • Frey M, Chomet P, Glawischnig E, Stettner CGS, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997) Analysis of a chemical plant defense mechanism in grasses. Science 277:696–699. doi:10.1126/science.277.5326.696

    Article  CAS  PubMed  Google Scholar 

  • Gill RS, Ellis B, Isman M (2003) Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores. J Chem Ecol 29(4):779–793. doi:10.1023/A:1022983529555

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43(1):205–227. doi:10.1146/annurev.phyto.43.040204.1359 23

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, Jones JD (2009) Hormone (dis)harmony moulds plant health and disease. Science 324(5928):750–752. doi:110.1126/science.1173771

    Article  CAS  PubMed  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89(6):2389–2393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo AY, Zhu QH, Chen X, Luo JC (2007) GSDS: a gene structure display server. Yi chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji 29(8):1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Ishihara A, Nacao T, Yuko M, Masatoshi M, Ichimaru N, Tanaka C, Nakajima H, Kyo W, Miyagawa H (2011) Probing the role of tryptophan-derived secondary metabolism in defense responses against Bipolaris oryzae infection in rice leaves by a suicide substrate of tryptophan decarboxylase. Phytochemistry 72(1):7–13. doi:10.1016/j.phytochem.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  • Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281(33):23357–23366. doi:10.1074/jbc.M602708200

    Article  CAS  PubMed  Google Scholar 

  • Koenning SR, Overstreet C, Noling JW, Donald PA, Becker JO, Fortnum BA (1999) Survey of crop losses in response to phytoparasitic nematodes in the United States for 1994. J Nematol 31:587–618

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445(7128):652–655. doi:10.1038/nature05504

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Xie QG, Smith-Becker JND, Kaloshian I (2006) Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades. Mol Plant Microbe Interact 19(6):655–664. doi:10.1094/MPMI-19-0655

    Article  CAS  PubMed  Google Scholar 

  • Mayama S, Tani T, Matsuura Y, Ueno T, Iida H (1981) The production of phytoalexins by oat in response to crown rust Puccinia coronata f. sp. avenae. Physiol Plant Pathol 19(2):217–226

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Gul A, Farooq M, Rizwan S, Mirza JI (2007) Genetic diversity of Aegilops variabilis (2n = 4x = 28; UUSS) for wheat improvement: morphocytogenetic characterization of some derived amphiploids and their practical significance. Pak J Bot 39(1):57–66

    Google Scholar 

  • Nahar K, Kyndt T, Vleesschauwer DD, Höfte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157(1):305–316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nahar K, Kyndt T, Nzogela YB, Gheysen G (2012) Abscisic acid interacts antagonistically with classical defense pathways in rice-migratory nematode interaction. New Phytol 196(3):901–913. doi:10.1111/j.1469-8137.2012.04310.x

    Article  CAS  PubMed  Google Scholar 

  • Nicol JM, Elekcioglu IH, Bolat N, Rivoal R (2007) The global importance of the cereal cyst nematode (Heterodera spp.) on wheat and international approaches to its control. Commun Agric Appl Biol Sci 72(3):677–686

    CAS  PubMed  Google Scholar 

  • Nomura T, Ishihara A, Hiromasa I, Ohkawa H, Takashi RE, Iwamura H (2003) Rearrangement of the genes for the biosynthesis of benzoxazinones in the evolution of Triticeae species. Planta 217(5):776–782. doi:10.1007/s00425-003-1040-5

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Tsuboi Y, Goda H, Yoshizumi T, Shimada Y, Hirayama T (2012) Multiple hormone treatment revealed novel cooperative relationships between abscisic acid and biotic stress hormones in cultured cells. Plant Biotechnol J 29:19–34

    Article  CAS  Google Scholar 

  • Panikashvili D, Savaldi-Goldstein S, Mandel T, Yifhar T, Franke RB, Höfer R, Schreiber L, Chory J, Aharoni A (2007) The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion. Plant Physiol 145(4):1345–1360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park S, Kang K, Lee K, Choi D, Kim YS, Back K (2009) Induction of serotonin biosynthesis is uncoupled from the coordinated induction of tryptophan biosynthesis in pepper fruits (Capsicum annuum) upon pathogen infection. Planta 230(6):1197–1206. doi:10.1007/s00425-009-1015-2

    Article  CAS  PubMed  Google Scholar 

  • Paull JG, Chalmers KJ, Karakousis A (1998) Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96(3–4):435–446

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl M (2009) Rest 2009 software user guide. Qiagen, Hilden

    Google Scholar 

  • Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell 22(10):3390–3409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simonetti E, Alba E, Montes M, Delibes Á, López-Braña I (2010) Analysis of ascorbate peroxidase genes expressed in resistant and susceptible wheat lines infected by the cereal cyst nematode, Heterodera avenae. Plant Cell Rep 29(10):1169–1178. doi:10.1007/s00299-010-0903-z

    Article  CAS  PubMed  Google Scholar 

  • Smiley RW (2009) Occurrence, distribution and control of Heterodera avenae and H. filipjevi in the western USA. Cereal cyst nematodes: status, research and outlook. CIMMYT, Ankara, pp 35–40

    Google Scholar 

  • Smiley RW, Julie MN (2009) Nematodes which challenge global wheat production. Wheat Science and Trade Wiley-Blackwell, pp 171–187

  • Spetsov P, Mingeot D, Jacquemin J, Samardjieva K, Marinova E (1997) Transfer of powdery mildew resistance from Aegilops variabilis into bread wheat. Euphytica 93(1):49–54. doi:10.1023/A:1002904123885

    Article  Google Scholar 

  • Tanaka E, Tanaka C, Mori N, Kuwahara Y, Tusda M (2003) Phenylpropanoid amides of serotonin accumulate in witches’ broom diseased bamboo. Phytochemistry 64(5):965–969. doi:10.1016/S0031-9422(03)00429-1

    Article  CAS  PubMed  Google Scholar 

  • Thomas JC, Adams DG, Nessler CL, Brown JK, Bohnert HJ (1995) Tryptophan decarboxylase, tryptamine, and reproduction of the whitefly. Plant Physiol 109(2):717–720

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ueno M, Shibata H, Kihara J, Honda Y, Arase S (2003) Increased tryptophan decarboxylase and monoamine oxidase activities induce Sekiguchi lesion formation in rice infected with Magnaporthe grisea. Plant J 36(2):215–228. doi:10.1046/j.1365-313X.2003.01875.x

    Article  CAS  PubMed  Google Scholar 

  • Whitehead AG (1998) Plant nematode control. CAB, Wallingford

    Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant–nematode interactions. Curr Opin Plant Biol 6(4):327–333. doi:10.1016/S1369-5266(03)00059-1

    Article  CAS  PubMed  Google Scholar 

  • Williamson VM, Kumar A (2006) Nematode resistance in plants: the battle underground. Trends Genet 22:396–403. doi:10.1016/j.tig.2006.05.003

    Article  CAS  PubMed  Google Scholar 

  • Xu DL, Long H, Liang JJ, Zhang J, Chen X, Li JL, Pan ZF, Deng GB, Yu MQ (2012) De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genomics 13(1):1–9. doi:10.1186/1471-2164-13-133

    Article  Google Scholar 

  • Yamazaki Y, Sudo H, Yamazaki M, Aimi N, Saito K (2003) Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila: cloning, characterization and differential expression in tissues and by stress compounds. Plant Cell Physiol 44(4):395–403. doi:10.1093/pcp/pcg051

    Article  CAS  PubMed  Google Scholar 

  • Yu MQ, Person-Dedryver F, Jahier J, Pannetier D, Tanguy AM, Abelard P (1990) Resistance to root knot nematode, Meloidogyne naasi (Franklin) transferred from Aegilops variabilis Eig to bread wheat. Agronomie 10(6):451–458

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the special fund for the National Basic Research Program of China (2013CB127500) and National Natural Science Foundation of China (No. 31470097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoqun Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional file 1

(JPEG 1212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zheng, M., Long, H. et al. Molecular Cloning and Characterization of Two Genes Encoding Tryptophan Decarboxylase from Aegilops variabilis with Resistance to the Cereal Cyst Nematode (Heterodera avenae) and Root-Knot Nematode (Meloidogyne naasi). Plant Mol Biol Rep 34, 273–282 (2016). https://doi.org/10.1007/s11105-015-0909-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0909-3

Keywords

Navigation