Skip to main content
Log in

Identification and Expression Analysis of the 14-3-3 Gene Family in the Mulberry Tree

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The 14-3-3 protein family regulates diverse physiological processes in plants. In this study, we identified eight 14-3-3 genes (designated MaGF14a to MaGF14h) from the mulberry tree. The phylogenetic tree demonstrated that MaGF14s can be divided into two major groups. Tissue-specific expression profiles indicated that the eight MaGF14s were expressed in all organs and they were most highly expressed in the female flower. We also detected different expression of the eight MaGF14s during seed germination and flower development. MaGF14a, MaGF14c, and MaGF14h were strongly expressed in the first 3 days after seed germination, while the MaGF14b, MaGF14d, MaGF14e, MaGF14f, and MaGF14g isoforms were expressed highly in the later period. All the MaGF14s were expressed low during development of male flowers and fruits. These findings indicate that MaGF14s play important roles in the growth and development of the mulberry tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ma:

Morus alba

MaGF14s:

14-3-3 gene family of mulberry

BLAST:

Basic Local Alignment Search Tool

CDS:

Coding sequence

qRT-PCR:

Real-time quantitative polymerase chain reaction

NCBI:

National Center for Biotechnology Information

EMBL:

European Molecular Biology Laboratory

DNase I:

Deoxyribonuclease I

TM:

Melting temperature

References

  • Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16(3):162–172

    Article  PubMed  CAS  Google Scholar 

  • Bornke F (2005) The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system. J Plant Physiol 162:161–168

    Article  PubMed  CAS  Google Scholar 

  • Chang IF, Curran A, Woolsey R, Quilici D, Cushman JC, Mittler R, Harmon A, Harper JF (2009) Proteomic profiling of tandem affinity purified 14-3-3 protein complexes in Arabidopsis thaliana. Proteomics 9:2967–2985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Checker VG, Khurana P (2013) Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress. Plant Cell Rep 32(11):1729–1741

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Guo CL, Wang P, Chen XQ, Wu KH, Li KZ, Yu YX, Chen LM (2013) Up-regulation and interaction of the plasma membrane H+-ATPase and the 14-3-3 protein are involved in the regulation of citrate exudation from the broad bean (Vicia faba L.) under Al stress. Plant Physiol Biochem 70:504–11

    Article  PubMed  CAS  Google Scholar 

  • Chevalier D, Morris ER, Walker JC (2009) 14-3-3 and FHA domains mediate phosphoprotein interactions. Annu Rev Plant Biol 60:67–91

    Article  PubMed  CAS  Google Scholar 

  • De Boer AH, van Kleeff PJ, Gao J (2013) Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma 250(2):425–440

    Article  PubMed  CAS  Google Scholar 

  • Delille JM, Sehnke PC, Ferl RJ (2001) The Arabidopsis 14-3-3 family of signaling regulators. Plant Physiol 126(1):35–38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denison FC, Paul AL, Zupanska AK, Ferl RJ (2011) 14-3-3 proteins in plant physiology. Semin Cell Dev Biol 22(7):720–727

    Article  PubMed  CAS  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postllethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics Soc Am 151(4):1531–1545

    CAS  Google Scholar 

  • Guo CL, Chen Q, Zhao XL, Chen XQ, Zhao Y, Wang L, Li KZ, Yu YX, Chen LM (2013) Al-enhanced expression and interaction of 14-3-3 protein and plasma membrane H+-ATPase is related to Al-induced citrate secretion in an Al-resistant black soybean. Plant Mol Biol Rep 31(4):1012–1024

    Article  CAS  Google Scholar 

  • He N, Zhang C, Qi X, Zhao S, Tao Y, Yang G, Lee TH, Wang X, Cai Q, Li D, Lu M, Liao S, Luo G, He R, Tan X, Xu Y, Li T, Zhao A, Jia L, Fu Q, Zeng Q, Gao C, Ma B, Liang J, Wang X, Shang J, Song P, Wu H, Fan L, Wang Q, Shuai Q, Zhu J, Wei C, Zhu-Salzman K, Jin D, Wang J, Liu T, Yu M, Tang C, Wang Z, Dai F, Chen J, Liu Y, Zhao S, Lin T, Zhang S, Wang J, Wang J, Yang H, Yang G, Wang J, Paterson AH, Xia Q, Ji D, Xiang Z (2013) Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun 4:2445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho SL, Huang LF, Lu CA, He SL, Wang CC, Yu SP, Chen J, Yu SM (2013) Sugar starvation- and GA-inducible calcium-dependent protein kinase1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol Biol 81:347–361

    Article  PubMed  CAS  Google Scholar 

  • Jin G, Wang X, Zhu J (2005) Bioinformatic analysis of the 1 4-3-3 gene family in rice. Acta Genet Sin 32(7):726–732

    PubMed  CAS  Google Scholar 

  • Kikuchi T, Nihei M, Nagai H, Fukushi H, Tabata K, Suzuki T, Akihisa T (2010) Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chem Pharm Bull 58(4):568–571

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Miyazawa M, Kamei A, Abe K, Kojima T (2010) Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci Biotechnol Biochem 74(12):2385–2395

    Article  PubMed  CAS  Google Scholar 

  • Konagaya KI, Matsushita Y, Kasahara M, Nyunoya H (2004) Members of 14-3-3 protein isoforms interacting with the resistance gene product N and the elicitor of Tobacco mosaic virus. J Gen Plant Pathol 70(4):221–231

    Article  CAS  Google Scholar 

  • Li X, Dhaubhadel S (2011) Soybean 14-3-3 gene family: identification and molecular characterization. Planta 233(3):569–582

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhao AC, Wang XL, Zhang QY, Li QY, Jin XY, Li ZG, Yu MD (2011) Molecular cloning and tissues expression analysis of three actin genes from mulberry (Morus alba L.). Acta Agron Sin 37(4):641–649

    Article  CAS  Google Scholar 

  • Li J, Song SS, Zhao YS, Guo WW, Guo GH, Peng HR, Ni ZF, Sun QX, Yao YY (2013) Wheat 14-3-3 protein conferring growth retardation in Arabidopsis. J Integrative Agric 12(2):209–217

    Article  Google Scholar 

  • Liu Y, Wang C, Lu H, Yang H (2010) Molecular evolution and expression pattern of the Populus 14-3-3 gene family. J Beijing Forestry University 32(3):1–7

    Google Scholar 

  • Lu G, Delisle AJ, Vetten NC, Ferl BJ (1992) Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Plant Biol 89(23):11490–11494

    CAS  Google Scholar 

  • Mayfield JD, Folta KM, Paul AL, Ferl RJ (2007) The 14-3-3 proteins mu and upsilon influence transition to flowering and early phytochrome response. Plant Physiol 145(4):1692–1702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mhawech P (2005) 14-3-3 proteins—an update. Cell Res 15(4):228–236

    Article  PubMed  CAS  Google Scholar 

  • Moore, B.M. and Perez, V.J (1967) Specific acidic proteins of the nervous system. Physiological and Biochemical Aspects of Nervous Integration, 343–359

  • Muslin AJ, Tanner JW, Allen PM, Shaw AS (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84(6):889–897

    Article  PubMed  CAS  Google Scholar 

  • Oh CS, Martin GB (2011) Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. J Biol Chem 286(16):14129–14136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paul AL, Folta KM, Fer RJ (2008) 14-3-3 proteins, red light and photoperiodic flowering. Plant Signal Behav 3(8):511–515

    Article  PubMed  PubMed Central  Google Scholar 

  • Purwestri YA, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K (2009) The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol 50(3):429–438

    Article  PubMed  CAS  Google Scholar 

  • Roberts MR (2000) Regulatory 14-3-3 protein-protein interactions in plant cells. Plant Biol 3(5):400–405

    CAS  Google Scholar 

  • Roberts MR, Salinas J, Collinge DB (2002) 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol Biol 50(6):1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist M, Alsterfjord M, Larsson C, Sommarin M (2001) Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol 127(1):143–149

    Article  Google Scholar 

  • Schoonheim PJ, Sinnige MP, Casaretto JA, Veiga H, Bunney TD, Quatrano RS, de Boer AH (2007) 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination. Plant J 49(2):289–301

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR (1996) Genome duplication in soybean (Glycine subgenus soja). Genetics Soc Am 144(1):329–338

    CAS  Google Scholar 

  • Singhal, Kishore, B., Khan, Ashraf, M., Anil, D., Baqual, Mohammad, F., Bindroo and Bushan, B (2010) Approaches to industrial exploitation of mulberry (Mulberry sp.) fruits. Journal of Fruit and Ornamental Plant Research 18(1):83–99

  • Sun XL, Luo X, Sun MZ, Chao C, Ding XD, Wang XD, Yang SS, Yu QY, Jia BW, Ji W, Cai H, Zhu YM (2013) A Glycine soja 14-3-3 protein GsGF14ο participates in stomatal and root hair development and drought tolerance in Arabidopsis thaliana. Plant Cell Physilo 55(1):99–118

    Article  CAS  Google Scholar 

  • Testerink C, van der Meulen RM, Oppedijk BJ, de Boer AH, Heimovaara-Dijkstra S, Kijne JW, Wang M (1999) Differences in spatial expression between 14-3-3 isoforms in germinating barley embryos. Plant Physiol 121(1):81–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Shakes DC (1996) Molecular evolution of the 14-3-3 protein family. J Mol Evol 43(4):384–398

    Article  PubMed  CAS  Google Scholar 

  • Wu KH, Lu G, Sehnke P, Ferl RJ (1997) The heterologous interactions among plant 14-3-3 proteins and identification of regions that are important for dimerization. Arch Biochem Biophys 339(1):2–8

    Article  PubMed  CAS  Google Scholar 

  • Xiao Q, Zhang H, Chen Y, Huang W, Zhu Z (2005) Effects of salinity on the growth and proline, soluble sugar and protein contents of Spartina alterniflora. Chinese J Ecol 24(4):373–376

    Article  Google Scholar 

  • Yaffe MB, Katrin R, Stefano V, Paul RC, Alastair A, Henrik L, Steven JG, Stephen JS, Lewis CC (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91(7):961–971

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Wang W, Coleman M, Orgil U, Feng J, Ma X, Ferl R, Turner JG, Xiao S (2009) Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. Plant J 60(3):539–550

    Article  PubMed  CAS  Google Scholar 

  • Yang, Z., Li, H., Guo Dong, Tang Xiao and Peng, S (2014) Identification and characterization of the 14-3-3 gene family in Hevea brasiliensis. Plant Physiol Biochem 80121–127.

  • Yao Y, Du Y, Jiang L, Liu JY (2007) Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa. J Biochem Mol Biol 40(3):349–357

    Article  PubMed  CAS  Google Scholar 

  • Yoon GM, Kieber JJ (2013) 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25(3):1016–1028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Z (2010) Cotton 14-3-3 proteins are functionally expressed in fibers and interacted with their partners during fiber development. Central China Normal University.

  • Zhang M, Wang RR, Chen M, Zhang HQ, Sun S, Zhang LY (2009) A new flavanone glycoside with anti-proliferation activity from the root bark of Morus alba L. Chinese J Natural Med 7(2):105–107

    Article  CAS  Google Scholar 

  • Zhou Y, Li B, Li X (2012) Roles of 14-3-3 proteins in regulating plant development. Chinese Bufletin Botany 47(1):55–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110182120024), the National Natural Science Foundation of China (Grant No. 31101769), and the Fundamental Research Funds for the Central Universities (No. XDJK2 014C065).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiling Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Yu, M., Xu, F. et al. Identification and Expression Analysis of the 14-3-3 Gene Family in the Mulberry Tree. Plant Mol Biol Rep 33, 1815–1824 (2015). https://doi.org/10.1007/s11105-015-0877-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0877-7

Keywords

Navigation