Skip to main content
Log in

Identification of Suitable Reference Genes for Barley Gene Expression Under Abiotic Stresses and Hormonal Treatments

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Barley (Hordeum vulgare L.) is an important cereal crop and also can be considered as a model plant for the Triticeae family. Quantitative real-time PCR (qRT-PCR) has emerged as a more practical technique to study barley gene expression, and the data normalization with reference genes is essential for accurate and reliable results. In this study, 17 candidate reference genes were evaluated from two distinct plant tissues (roots and leaves) at the barley seedling stage under different abiotic stresses (osmotic, salt, and heat) and hormonal treatments (gibberellin A3 (GA3) and methyl jasmonate (JA)). Our qRT-PCR data were analyzed with three commonly used software packages: geNorm, NormFider, and BestKeeper. In combination with the analysis of these three packages, four to five candidate genes were selected as suitable reference genes in each experimental set. These results confirmed that expression stability of reference genes depends on the experimental conditions. This study is the systematic analysis for the selection of superior reference genes for qRT-PCR in barley under different abiotic and hormonal treatments and will benefit further studies on gene expression in barley and other species of Triticeae family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64(15):5245–5250

    Article  CAS  PubMed  Google Scholar 

  • Artico S, Nardeli SM, Brilhante O, Grossi-de-Sa MF, Alves-Ferreira M (2010) Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data. BMC Plant Biol 10:49. doi:10.1186/1471-2229-10-49

    Article  PubMed Central  PubMed  Google Scholar 

  • Brunner A, Yakovlev I, Strauss S (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4(1):14

    Article  PubMed Central  PubMed  Google Scholar 

  • Bustin S (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29(1):23–39

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34(3):597–601. doi:10.1677/jme.1.01755

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48(8):663–672

    Article  CAS  PubMed  Google Scholar 

  • Consortium IBGS (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716

    Google Scholar 

  • Cruz F, Kalaoun S, Nobile P, Colombo C, Almeida J, Barros LM, Romano E, Grossi-de-Sá MF, Vaslin M, Alves-Ferreira M (2009) Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR. Mol Breed 23(4):607–616

    Article  CAS  Google Scholar 

  • Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139(1):5–17. doi:10.1104/pp. 105.063743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derveaux S, Vandesompele J, Hellemans J (2010) How to do successful gene expression analysis using real-time PCR. Methods 50(4):227–230. doi:10.1016/j.ymeth.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  • Die JV, Roman B, Nadal S, Gonzalez-Verdejo CI (2010) Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions. Planta 232(1):145–153. doi:10.1007/s00425-010-1158-1

    Article  CAS  PubMed  Google Scholar 

  • Faccioli P, Ciceri GP, Provero P, Stanca AM, Morcia C, Terzi V (2007) A combined strategy of “in silico” transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies. Plant Mol Biol 63(5):679–688. doi:10.1007/s11103-006-9116-9

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Ma J, Guo Q, Li X, Wang H, Lu M (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One 8(2):e56573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goncalves S, Cairney J, Maroco J, Oliveira MM, Miguel C (2005) Evaluation of control transcripts in real-time RT-PCR expression analysis during maritime pine embryogenesis. Planta 222(3):556–563. doi:10.1007/s00425-005-1562-0

    Article  CAS  PubMed  Google Scholar 

  • Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, Gutierrez L (2009) Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot 60(2):487–493

    Article  PubMed  Google Scholar 

  • Gutierrez L, Mauriat M, Guenin S, Pelloux J, Lefebvre JF, Louvet R, Rusterucci C, Moritz T, Guerineau F, Bellini C, Van Wuytswinkel O (2008a) The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol J 6(6):609–618. doi:10.1111/j.1467-7652.2008.00346.x

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez L, Mauriat M, Pelloux J, Bellini C, Van Wuytswinkel O (2008b) Towards a systematic validation of references in real-time rt-PCR. Plant Cell 20(7):1734–1735. doi:10.1105/tpc.108.059774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hong S-Y, Seo PJ, Yang M-S, Xiang F, Park C-M (2008) Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real-time PCR. BMC Plant Biol 8(1):112

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10:93. doi:10.1186/1471-2199-10-93

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y-H, Yu J-Q, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153(4):1526–1538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6(4):279–284

    Article  CAS  PubMed  Google Scholar 

  • Janska A, Hodek J, Svoboda P, Zamecnik J, Prasil IT, Vlasakova E, Milella L, Ovesna J (2013) The choice of reference gene set for assessing gene expression in barley (Hordeum vulgare L.) under low temperature and drought stress. Mol Genet Genomics 288(11):639–649. doi:10.1007/s00438-013-0774-4

    Article  CAS  PubMed  Google Scholar 

  • Jarosova J, Kundu JK (2010) Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol 10:146. doi:10.1186/1471-2229-10-146

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim B-R, Nam H-Y, Kim S-U, Kim S-I, Chang Y-J (2003) Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnol Lett 25(21):1869–1872

    Article  CAS  PubMed  Google Scholar 

  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J 62(5):807–816

    Article  CAS  PubMed  Google Scholar 

  • Kozera B, Rapacz M (2013) Reference genes in real-time PCR. J Appl Genet 54(4):391–406. doi:10.1007/s13353-013-0173-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, Sindelka R, Sjöback R, Sjögreen B, Strömbom L (2006) The real-time polymerase chain reaction. Mol Asp Med 27(2):95–125

    Article  CAS  Google Scholar 

  • Kumar V, Sharma R, Trivedi P, Vyas GK, Khandelwal V (2011) Traditional and novel references towards systematic normalization of qRT-PCR data in plants. Aust J Crop Sci 5:1455–1468

    Google Scholar 

  • Lu J, Sivamani E, Azhakanandam K, Samadder P, Li X, Qu R (2008) Gene expression enhancement mediated by the 5′ UTR intron of the rice rubi3 gene varied remarkably among tissues in transgenic rice plants. Mol Gen Genomics 279(6):563–572

    Article  CAS  Google Scholar 

  • Ma S, Niu H, Liu C, Zhang J, Hou C, Wang D (2013) Expression stabilities of candidate reference genes for RT-qPCR under different stress conditions in soybean. PLoS One 8(10):e75271. doi:10.1371/journal.pone.0075271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manoli A, Sturaro A, Trevisan S, Quaggiotti S, Nonis A (2012) Evaluation of candidate reference genes for qPCR in maize. J Plant Physiol 169(8):807–815. doi:10.1016/j.jplph.2012.01.019

    Article  CAS  PubMed  Google Scholar 

  • Migocka M, Papierniak A (2011) Identification of suitable reference genes for studying gene expression in cucumber plants subjected to abiotic stress and growth regulators. Mol Breed 28(3):343–357

    Article  Google Scholar 

  • Mohammadkhani N, Heidari R (2008) Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Appl Sci J 3(3):448–453

    Google Scholar 

  • Ovesna J, Kučera L, Vaculová K, Štrymplová K, Svobodova I, Milella L (2012) Validation of the β-amy1 transcription profiling assay and selection of reference genes suited for a RT-qPCR assay in developing barley caryopsis. PLoS One 7(7):e41886

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan L-j, Jiang L (2014) Identification and expression of the WRKY transcription factors of Carica papaya in response to abiotic and biotic stresses. Mol Biol Rep :1–11

  • Park S-C, Kim Y-H, Ji CY, Park S, Cheol Jeong J, Lee H-S, Kwak S-S (2012) Stable internal reference genes for the normalization of real-time PCR in different sweetpotato cultivars subjected to abiotic stress conditions. PLoS One 7(12):e51502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett 26(6):509–515

    Article  CAS  PubMed  Google Scholar 

  • Rapacz M, Stępień A, Skorupa K (2012) Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age. Acta Physiol Plant 34(5):1723–1733. doi:10.1007/s11738-012-0967-1

    Article  CAS  Google Scholar 

  • Reddy DS, Bhatnagar-Mathur P, Cindhuri KS, Sharma KK (2013) Evaluation and validation of reference genes for normalization of quantitative real-time PCR based gene expression studies in peanut. PLoS One 8(10):e78555. doi:10.1371/journal.pone.0078555

    Article  PubMed Central  PubMed  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6(1):27

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, Brittner B, Ludwig B, Schilling M (2005) Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes 19(2):101–109

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Zakrajsek BA (2000) Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46(1):69–81

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Guo J, Ling H, Chen S, Wang S, Xu L, Allan AC, Que Y (2014) Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS One 9(1):e84426

    Article  PubMed Central  PubMed  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009a) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10:71. doi:10.1186/1471-2199-10-71

    Article  PubMed Central  PubMed  Google Scholar 

  • Tong Z, Gao Z, Wang F, Zhou J, Zhang Z (2009b) Selection of reliable reference genes for gene expression studies in peach using real-time PCR. BMC Mol Biol 10(1):71

    Article  PubMed Central  PubMed  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell Online 20(7):1736–1737

    Article  CAS  Google Scholar 

  • Valasek MA, Repa JJ (2005) The power of real-time PCR. Adv Physiol Educ 29(3):151–159. doi:10.1152/advan.00019.2005

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034

    Article  PubMed Central  PubMed  Google Scholar 

  • VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18(10):1187–1197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verslues PE, Ober ES, Sharp RE (1998) Root growth and oxygen relations at low water potentials impact of oxygen availability in polyethylene glycol solutions. Plant Physiol 116:1403–1412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker NJ (2002) A technique whose time has come. Science 296(5567):557–559

    Article  CAS  PubMed  Google Scholar 

  • Wan H, Zhao Z, Qian C, Sui Y, Malik AA, Chen J (2010) Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Anal Biochem 399(2):257–261. doi:10.1016/j.ab.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  • Warzybok A, Migocka M (2013) Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition. PLoS One 8(9):e72887. doi:10.1371/journal.pone.0072887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weng X, Wang L, Wang J, Hu Y, Du H, Xu C, Xing Y, Li X, Xiao J, Zhang Q (2014) Ghd7 is a central regulator for growth, development, adaptation and responses to biotic and abiotic stresses. Plant Physiol :113.231308

  • Wiesner M, Hanschen FS, Schreiner M, Glatt H, Zrenner R (2013) Induced production of 1-methoxy-indol-3-ylmethyl glucosinolate by jasmonic acid and methyl jasmonate in sprouts and leaves of pak choi (Brassica rapa ssp. chinensis). Int J Mol Sci 14(7):14996–15016

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang L, He LL, Fu QT, Xu ZF (2013) Selection of reliable reference genes for gene expression studies in the biofuel plant Jatropha curcas using real-time quantitative PCR. Int J Mol Sci 14(12):24338–24354. doi:10.3390/ijms141224338

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Zhang L, Li W, Han S, Yang W, Qi L (2013) Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions. PLoS One 8(1):e53196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31101149), Natural Science Foundation of Zhejiang Province (Grant No. Y3110574), Public Benefit Technology Applied Research Project of Zhejiang Province (Project No. 2012C22029), China Agriculture Research System (CARS-05), the Key Research Foundation of Science and Technology Department of Zhejiang Province of China (2012C12902-2), and Agro-scientific Research in the Public Interest (201303016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Yang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Specificity of primer pairs for qRT-PCR amplification. (A) Melting curve of the 17 candidate reference genes showing a single peak. (B) Agarose gel (2%) showing amplification of a specific PCR product of the expected size for each gene tested in this study. M: Marker 1000. (JPEG 1,532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, W., Zhu, J., Shang, Y. et al. Identification of Suitable Reference Genes for Barley Gene Expression Under Abiotic Stresses and Hormonal Treatments. Plant Mol Biol Rep 33, 1002–1012 (2015). https://doi.org/10.1007/s11105-014-0807-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0807-0

Keywords

Navigation