Skip to main content

Advertisement

Log in

Role of Ethylene Response Transcription Factor (ERF) and Its Regulation in Response to Stress Encountered by Plants

  • Review
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Plants are nonmotile and are easily affected by both biotic and abiotic stresses. Plants have evolved themselves at both cellular and molecular level to fight against stress. Transcription factors are important among the stress-responsive genes, and their protein products are known to regulate the expression of other stress-responsive genes via binding to the regulatory elements. Among the plant transcription factors, ethylene response factor (ERF) is one of the largest subfamilies of Apetala2 (AP2)/ERF transcription factor family and is characterized with single AP2 domain. ERFs are a double-edged sword; though most of the ERFs are activators of stress-responsive genes, certain ERF could act as repressor, and this phenomenon of ERF has been well discussed in this review. Further, the expression of ERFs may be ethylene dependent or independent and is regulated by feedback mechanism. Apart from above regulation mechanism, expressions of ERFs are post-transcriptionally regulated by microRNAs (miRNAs), and miRNA expressions are in turn regulated by ERFs. The present review highlights the importance of ERFs in plant stress management and complexity in regulation of ERF expression in response to various stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480. doi:10.1105/tpc.104.022897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen MD, Yamasaki K, Ohme-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–96. doi:10.1093/emboj/17.18.5484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Almoguera C, Prieto-Dapena P, Diaz-Martin J, Espinosa JM, Carranco R, Jordano J (2009) The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biol 9:75. doi:10.1186/1471-2229-9-75

    Article  PubMed Central  PubMed  Google Scholar 

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321. doi:10.1007/s12298-013-0179-1

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barah P, Winge P, Kusnierczyk A, Tran DH, Bones AM (2013) Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS One 8:e58987. doi:10.1371/journal.pone.0058987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bethke G, Scheel D, Lee J (2009) Sometimes new results raise new questions: the question marks between mitogen-activated protein kinase and ethylene signaling. Plant Signal Behav 4:672–674. doi:10.1073/pnas.0810206106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao Y, Song F, Goodman RM, Zheng Z (2006) Molecular characterization of four rice genes encoding ethylene-responsive transcriptional factors and their expressions in response to biotic and abiotic stress. J Plant Physiol 163:1167–1178

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Bejerano P, Santa Maria E, Torres-Perez R, Royo C, Lijavetzky D, Bravo G, Aguirreolea J, Sanchez-Diaz M, Antolin MC, Martinez-Zapater JM (2013) Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Plant Cell Physiol 54:1200–1216. doi:10.1093/pcp/pct071

    Article  CAS  PubMed  Google Scholar 

  • Carre IA, Kim JY (2002) MYB transcription factors in the Arabidopsis circadian clock. J Exp Bot 53:1551–1557

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta 1819:120–128. doi:10.1016/j.bbagrm.2011.09.002

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu W, He X, Liu T, Zhang B (2013) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 8:e80816

    Article  PubMed Central  PubMed  Google Scholar 

  • Dannemann M, Prufer K, Lizano E, Nickel B, Burbano HA, Kelso J (2012) Transcription factors are targeted by differentially expressed miRNAs in primates. Genome Biol Evol 4:552–564. doi:10.1093/gbe/evs033

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4:25. doi:10.1186/1471-2105-4-25

    Article  PubMed Central  PubMed  Google Scholar 

  • Dong W, Ai X, Xu F, Quan T, Liu S, Xia G (2012) Isolation and characterization of a bread wheat salinity responsive ERF transcription factor. Gene 511:38–45. doi:10.1016/j.gene.2012.09.039

    Article  CAS  PubMed  Google Scholar 

  • Duan C, Argout X, Gebelin V, Summo M, Dufayard JF, Leclercq J, Kuswanhadi Piyatrakul P, Pirrello J, Rio M, Champion A, Montoro P (2013) Identification of the Hevea brasiliensis AP2/ERF superfamily by RNA sequencing. BMC Genomics 14:30. doi:10.1186/1471-2164-14-30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eini O, Yang N, Pyvovarenko T, Pillman K, Bazanova N, Tikhomirov N, Eliby S, Shirley N, Sivasankar S, Tingey S, Langridge P, Hrmova M, Lopato S (2013) Complex regulation by Apetala2 domain-containing transcription factors revealed through analysis of the stress-responsive TdCor410b promoter from durum wheat. PLoS One 8:e58713. doi:10.1371/journal.pone.0058713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Felten J, Vahala J, Love J, Gorzsás A, Gerber L, Kumar M, Kangasjärvi J, Sundberg B (2011) Ethylene signaling via ethylene response factors (ERFs) modifies wood development in hybrid aspen. BMC Proc 5:I15. doi:10.1186/1753-6561-5-s7-i15

    Article  PubMed Central  Google Scholar 

  • Fischer U, Droge-Laser W (2004) Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Mol Plant Microbe Interact 17(10):1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Franco-Zorrilla JM, Lopez-Vidriero I, Carrasco JL, Godoy M, Vera P, Solano R (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A 111:2367–2372. doi:10.1073/pnas.1316278111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo H, Sun Y, Li Y, Liu X, Zhang W, Ge F (2014) Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. New Phytol 201:279–291. doi:10.1111/nph.12484

    Article  CAS  PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471. doi:10.1016/j.pbi.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1230. doi:10.1038/nature08258

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Wang Y, Liu G (2012) Expression analysis of MYC genes from Tamarix hispida in response to different abiotic stresses. Int J Mol Sci 13:1300–1313. doi:10.3390/ijms13021300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ju C, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang J, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci U S A 109:19486–19491. doi:10.1073/pnas.1214848109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SY, Kim YC, Lee JH, Oh SK, Chung E, Lee S, Lee YH, Choi D, Park JM (2005) Identification of a CaRAV1 possessing an AP2/ERF and B3 DNA-binding domain from pepper leaves infected with Xanthomonas axonopodis pv. glycines 8ra by differential display. Biochim Biophys Acta 1729:141–146

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Dang F, Lin J, Yu L, Shi Y, Xiao Y, Huang M, Chen C, Qi A, Liu Z, Guan D, Mou S, Qiu A, He S (2013) Overexpression of a Chinese cabbage BrERF11 transcription factor enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Physiol Biochem 62:70–78. doi:10.1016/j.plaphy.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Hong JP, Oh SK, Lee S, Choi D, Kim WT (2004) The ethylene-responsive factor like protein 1 (CaERFLP1) of hot pepper (Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRT sequences with different binding affinities: possible biological roles of CaERFLP1 in response to pathogen infection and high salinity conditions in transgenic tobacco plants. Plant Mol Biol 55:61–81

    Article  CAS  PubMed  Google Scholar 

  • Lee HE, Shin D, Park SR, Han SE, Jeong MJ, Kwon TR, Lee SK, Park SC, Yi BY, Kwon HB, Byun MO (2007) Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochem Biophys Res Commun 353:863–868

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zhu X, Mao J, Zou Y, Fu D, Chen W, Lu W (2013) Isolation and characterization of ethylene response factor family genes during development, ethylene regulation and stress treatments in papaya fruit. Plant Physiol Biochem 70:81–92. doi:10.1016/j.plaphy.2013.05.020

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Lu Y, Liu H, Wang F, Xin Z, Zhang Z (2008) A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses. J Exp Bot 59:3111–3120. doi:10.1093/jxb/ern165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang G, He H, Yu D (2012) Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS One 7:e48951. doi:10.1371/journal.pone.0048951

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Licausi F, van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315. doi:10.1111/j.1365-313X.2010.04149.x

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J Exp Bot 63:3899–3911. doi:10.1093/jxb/ers079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu J, Ju H, Zhou G, Zhu C, Erb M, Wang X, Wang P, Lou Y (2011) An EAR-motif-containing ERF transcription factor affects herbivore-induced signaling, defense and resistance in rice. Plant J 68:583–596. doi:10.1111/j.1365-313X.2011.04709.x

    Article  CAS  PubMed  Google Scholar 

  • Ma HL, Zhou HL, Zhang HY, Zhao J (2010) Cloning and expression analysis of an AP2/ERF gene and its responses to phytohormones and abiotic stresses in rice. Rice Sci 17:1–9. doi:10.1016/s1672-6308(08)60098-0

    Article  Google Scholar 

  • Magnani E, Sjolander K, Hake S (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277. doi:10.1105/tpc.104.023135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maruyama Y, Yamoto N, Suzuki Y, Chiba Y, Yamazaki K, Sato T, Yamaguchi J (2013) The Arabidopsis transcriptional repressor ERF9 participates in resistance against necrotrophic fungi. Plant Sci 213:79–87. doi:10.1016/j.plantsci.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149. doi:10.1093/pcp/pcn101

    Article  CAS  PubMed  Google Scholar 

  • Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–82. doi:10.1105/tpc.7.2.173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22:1282–1288. doi:10.1093/emboj/cdg131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pei H, Ma N, Tian J, Luo J, Chen J, Li J, Zheng Y, Chen X, Fei Z, Gao J (2013) An NAC transcription factor controls ethylene-regulated cell expansion in flower petals. Plant Physiol 163:775–791. doi:10.1104/pp. 113.223388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pena-Castro JM, van Zanten M, Lee SC, Patel MR, Voesenek LA, Fukao T, Bailey-Serres J (2011) Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism. Plant J 67:434–446. doi:10.1111/j.1365-313X.2011.04605.x

    Article  CAS  PubMed  Google Scholar 

  • Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J (2008) The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357. doi:10.1104/pp. 108.117523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quan R, Hu S, Zhang Z, Zhang H, Huang R (2010) Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J 8:476–488. doi:10.1111/j.1467-7652.2009.00492.x

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315

    Article  CAS  PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009. doi:10.1006/bbrc.2001.6299

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119. doi:10.1016/j.bbagrm.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller-Roeber B (2013) Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131. doi:10.1105/tpc.113.113068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sekar D, Hairul Islam VI, Thirugnanasambantham K, Saravanan S (2014) Relevance of miR-21 in HIV and non-HIV-related lymphomas. Tumour Biol. doi:10.1007/s13277-014-2068-9

    PubMed  Google Scholar 

  • Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–466

    Article  CAS  PubMed  Google Scholar 

  • Son GH, Wan J, Kim HJ, Nguyen XC, Chung WS, Hong JC, Stacey G (2012) Ethylene-responsive element-binding factor 5, ERF5, is involved in chitin-induced innate immunity response. Mol Plant Microbe Interact 25:48–60. doi:10.1094/MPMI-06-11-0165

    Article  CAS  PubMed  Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A 94:1035–1040

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thirugnanasambantham K, Prabu G, Palanisamy S, Chandrabose SR, Mandal AKA (2013) Analysis of dormant bud (Banjhi) specific transcriptome of tea (Camellia sinensis (L.) O. Kuntze) from cDNA library revealed dormancy-related genes. Appl Biochem Biotechnol 169:1405–17. doi:10.1007/s12010-012-0070-5

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Zhang H, Pan X, Chen X, Zhang Z, Lu X, Huang R (2011) Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings. Transgenic Res 20:857–866. doi:10.1007/s11248-010-9463-9

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759. doi:10.1007/s00726-008-0061-6

    Article  CAS  PubMed  Google Scholar 

  • Vogel MO, Gomez-Perez D, Probst N, Dietz KJ (2012) Combinatorial signal integration by APETALA2/ethylene response factor (ERF)-transcription factors and the involvement of AP2-2 in starvation response. Int J Mol Sci 13:5933–5951. doi:10.3390/ijms13055933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wan L, Zhang J, Zhang H, Zhang Z, Quan R, Zhou S, Huang R (2011) Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PLoS One 6:e25216. doi:10.1371/journal.pone.0025216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708. doi:10.1038/nature04920

    Article  CAS  PubMed  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732. doi:10.1007/s11103-007-9237-9

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803. doi:10.1146/annurev.arplant.57.032905.105444

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S (2004) Solution structure of the B3 DNA binding domain of the Arabidopsis cold-responsive transcription factor RAV1. Plant Cell 16:3448–3459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhai Y, Li JW, Li XW, Lei TT, Yan F, Zhao Y, Li YJ, Su LT, Wang Y, Wang QY (2012) Isolation and characterization of a novel transcriptional repressor GmERF6 from soybean. Biol Plant 57:26–32. doi:10.1007/s10535-012-0146-7

    Article  Google Scholar 

  • Zhai Y, Wang Y, Li Y, Lei T, Yan F, Su L, Li X, Zhao Y, Sun X, Li J, Wang Q (2013) Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco. Gene 513:174–183

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ (2003) Overexpression analysis of plant transcription factors. Curr Opin Plant Biol 6:430–440

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796. doi:10.1093/jxb/erp214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang Z, Li F, Li D, Zhang H, Huang R (2010) Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta 232:765–774. doi:10.1007/s00425-010-1208-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Li J, Liu A, Zou J, Zhou X, Xiang J, Rerksiri W, Peng Y, Xiong X, Chen X (2012) Expression profile in rice panicle: insights into heat response mechanism at reproductive stage. PLoS One 7:e49652. doi:10.1371/journal.pone.0049652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Cai XL, Wang ZY, Hong MM (2003) An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J Biol Chem 278:47803–47811. doi:10.1074/jbc.M302806200

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Shi J, Xu W, Li H, He M, Xu Y, Xu T, Yang Y, Cao J, Wang Y (2013) Three ERF transcription factors from Chinese wild grapevine Vitis pseudoreticulata participate in different biotic and abiotic stress-responsive pathways. J Plant Physiol 170:923–933. doi:10.1016/j.jplph.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Qi L, Liu X, Cai S, Xu H, Huang R, Li J, Wei X, Zhang Z (2014) The wheat ethylene response factor transcription factor pathogen-induced ERF1 mediates host responses to both the necrotrophic pathogen Rhizoctonia cerealis and freezing stresses. Plant Physiol 164:1499–514. doi:10.1104/pp. 113.229575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

All the authors are thankful to the Pondicherry Centre for Biological Sciences (PCBS) for providing the necessary facility. Financial support as start-up loan from the State Bank of India (RASMECC), Pondicherry, India, to establish the PCBS is also gratefully acknowledged. KT is a recipient of Young Scientist grant (SB/FT/LS-382/2012), Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, and their financial support is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishnaraj Thirugnanasambantham or Villianur Ibrahim Hairul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirugnanasambantham, K., Durairaj, S., Saravanan, S. et al. Role of Ethylene Response Transcription Factor (ERF) and Its Regulation in Response to Stress Encountered by Plants. Plant Mol Biol Rep 33, 347–357 (2015). https://doi.org/10.1007/s11105-014-0799-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0799-9

Keywords

Navigation