Skip to main content
Log in

Construction of a High-Density Simple Sequence Repeat Consensus Genetic Map for Pear (Pyrus spp.)

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

As an important fruit crop that is widely grown commercially in temperate regions of the world, pear (Pyrus) is a target for pursuing efficient breeding strategies. Construction of a reliable and dense genetic linkage map is critical for undertaking marker-assisted breeding. In this study, a population of 56 F1 seedlings of ‘Bayuehong’ × ‘Dangshansuli’ was used to construct a high-density simple sequence repeat (SSR)-based genetic linkage map. A total of 1,756 SSR markers, including 1,341 newly designed SSRs based on whole-genome sequencing of an Asiatic pear along with 415 previously reported SSRs, were first evaluated for polymorphism. Based on 894 SSRs demonstrating polymorphism, a consensus genetic map consisting of 734 loci distributed along all 17 linkage groups (LG) was constructed, with a total length of 1,661.4 cM and with an average marker interval of 2.26 cM. Comparisons among different maps of pear and apple were then made based on positions of previously mapped SSR markers on the consensus map. As a result, homologous linkage groups LG3 and LG11, LG5 and LG10, LG9 and LG17, LG13 and LG16, LG8 and LG15 have been identified. This high-density SSR map along with a set of SSR markers covering the whole genome of pear will greatly facilitate integration of independent maps, aid in pursuing comparative genome studies, and in evaluation of different germplasm in future genetic and breeding studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bell RL (1990) Pears (Pyrus). In: Moore JN, Ballington JR (eds) Genetic resources of temperate fruit and nut crops I. International Society for Horticultural Science, Wageningen, The Netherlands, pp 655–697

  • Bell RL, Quamme HA, Layne REC, Skirvin RM (1996) Pears. In: Janick J, Moore JN (eds) Fruit breeding. Volume I: Tree and tropical fruits. Wiley, UK, pp 441–514

    Google Scholar 

  • Bushakra J, Stephens M, Atmadjaja A, Lewers K, Symonds V, Udall J, Chagné D, Buck E, Gardiner S (2012) Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry, apple, and peach. Theor Appl Genet 125:311–327

    Article  CAS  PubMed  Google Scholar 

  • Cabrera A, Kozik A, Howad W, Arus P, Iezzoni A, Knaap E (2009) Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics 10:562

    Article  PubMed Central  PubMed  Google Scholar 

  • Celton JM, Tustin D, Chagné D, Gardiner S (2009a) Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5:93–107

    Article  Google Scholar 

  • Celton JM, Chagné D, Tustin SD, Terakami S, Nishitani C, Yamamoto T, Gardiner SE (2009b) Update on comparative genome mapping between Malus and Pyrus. BMC Res Notes 2(1):182

    Article  PubMed Central  PubMed  Google Scholar 

  • Chakravarti A, Lasher LK, Reefer JE (1991) A maximum likelihood method for estimating genome length using genetic linkage data. Genetics 128:175–182

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dondini L, Pierantoni L, Gaiotti F, Chiodini R, Tartarini S, Bazzi C, Sansavini S (2005) Identifying QTLs for fire-blight resistance via a European pear (Pyrus communis L.) genetic linkage map. Mol Breed 14:407–418

    Article  Google Scholar 

  • Ellegren H, Moore S, Robinson N, Byrne K, Ward W, Sheldon BC (1997) Microsatellite evolution–a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol 14:854–860

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF, Zhang SL, Wu J (2013) Transferability of Newly Developed Pear SSR Markers to Other Rosaceae Species. Plant Mol Biol Report 31(6):1271–1282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fernándz F, Harvey N, James C (2006) Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.). Mol Ecol Notes 6:1039–1041

    Article  Google Scholar 

  • Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gasic K, Han Y, Kertbundit S, Shulaev V, Iezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23:397–411

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076

    Article  CAS  Google Scholar 

  • Guilford P, Prakash S, Zhu J, Rikkerink E, Gardiner S, Bassett H, Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254

    Article  CAS  Google Scholar 

  • Han Y, Zheng D, Vimolmangkang S, Khan MA, Beever JE, Korban SS (2011) Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot 62:5117–5130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hasebe M, Iwatsuki K (1990) Adiantum capillus-veneris chloroplast DNA clone bank: as useful heterologous probes in the systematics of the leptosporangiate ferns. Am Fern J 80:20–25

    Article  Google Scholar 

  • Iketani H, Abe K, Yamamoto T, Kotobuki K, Sato Y, Saito T, Terai O, Matsuta N, Hayashi T (2001) Mapping of disease-related genes in Japanese pear using a molecular linkage map with RAPD markers. Breed Sci 51:179–184

    Article  CAS  Google Scholar 

  • Illa E, Sargent DJ, Girona EL, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, van der Knaap E, Iezzoni A (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Inoue E, Matsuki Y, Anzai H, Evans K (2007) Isolation and characterization of microsatellite markers in Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 7:445–447

    Article  CAS  Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140

    Article  PubMed Central  PubMed  Google Scholar 

  • Jung S, Cestaro A, Troggio M, Main D, Zheng P, Cho I, Folta KM, Sosinski B, Abbott A, Celton JM (2012) Whole genome comparisons of Fragaria, Prunus and Malus reveal different modes of evolution between Rosaceous subfamilies. BMC Genomics 13:129

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kantety RV, La Rota M, Matthews DE, Sorrells ME (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48:501–510

    Article  CAS  PubMed  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder C, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Lu M, Tang H, Chen X, Gao J, Chen Q, Lin L (2010) Comparative genome mapping between apple and pear by apple mapped SSR markers. Am-Eurasian J Agric Environ Sci 9:303–309

    Google Scholar 

  • Maliepaard C, Alston F, Van Arkel G, Brown L, Chevreau E, Dunemann F, Evans K, Gardiner S, Guilford P, Van Heusden A (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73

    Article  CAS  Google Scholar 

  • Montanari S, Saeed M, Knäbel M, Kim Y, Troggio M, Malnoy M, Velasco R, Fontana P, Won K, Durel CE, Perchepied L, Schaffer R, Wiedow C, Bus V, Brewer L, Gardiner SE, Crowhurst RN, Chagné D (2013) Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids. PLoS One 8:e77022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400

    Article  CAS  Google Scholar 

  • Pierantoni L, Cho KH, Shin IS, Chiodini R, Tartarini S, Dondini L, Kang SJ, Sansavini S (2004) Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet 109:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Sawamura Y, Saito T, Takada N, Yamamoto T, Kimura T, Hayashi T, Kotobuki K (2004) Identification of parentage of Japanese pear ‘Housui’. J Jpn Soc Horticult Sci 73:511–518

    Article  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci C, Van de Weg W, Van Kaauwen M, Walser M, Kodde L, Soglio V, Gianfranceschi L, Durel C, Costa F (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Tanksley S, Young N, Paterson A, Bonierbale M (1989) RFLP mapping in plant breeding: new tools for an old science. Nat Biotechnol 7:257–264

    Article  CAS  Google Scholar 

  • Temnykh S, Park WD, Ayres N, Cartinhour S, Hauck N, Lipovich L, Cho YG, Ishii T, Mccouch SR (2000) Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet 100:697–712

    Article  CAS  Google Scholar 

  • Terakami S, Kimura T, Nishitani C, Sawamura Y, Saito T, Hirabayashi T, Yamamoto T (2009) Genetic linkage map of the Japanese pear 'Housui' identifying three homozygous genomic regions. J Jpn Soc Horticult Sci 78:417–424

    Article  CAS  Google Scholar 

  • Terakami S, Nishitani C, Kunihisa M, Shirasawa K, Sato S, Tabata S, Kurita K, Kanamori H, Katayose Y, Takada N (2014) Transcriptome-based single nucleotide polymorphism markers for genome mapping in Japanese pear (Pyrus pyrifolia Nakai). Tree Genet Genomes. doi:10.1007/s11295-014-0726-0

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Vezzulli S, Micheletti D, Riaz S, Pindo M, Viola R, This P, Walker MA, Troggio M, Velasco R (2008) A SNP transferability survey within the genus Vitis. BMC Plant Biol 8:128

    Article  PubMed Central  PubMed  Google Scholar 

  • Vilanova S, Sargent D, Arús P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67

    Article  PubMed Central  PubMed  Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wünsch A, Hormaza J (2007) Characterization of variability and genetic similarity of European pear using microsatellite loci developed in apple. Sci Hortic 113:37–43

    Article  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Kotobuki K, Ban Y, Hayashi T, Matsuta N (2001) SSRs isolated from apple can identify polymorphism and genetic diversity in pear. Theor Appl Genet 102:865–870

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002c) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Kimura T, Terakami S, Nishitani C, Sawamura Y, Saito T, Kotobuki K, Hayashi T (2007) Integrated reference genetic linkage maps of pear based on SSR and AFLP markers. Breed Sci 57:321–329

    Article  CAS  Google Scholar 

  • Zhang R, Wu J, Li X, Khan MA, Chen H, Korban SS, Zhang S (2013) An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol Biol Report 31:678–687

    Article  CAS  Google Scholar 

  • Zhao Y, Prakash CS, He G (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5:362. doi:10.1186/1756-0500-5-362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the earmarked fund for China Agriculture Research System (CARS-29), National Natural Science Foundation of China (31230063 and 31171928), the Fundamental Research Funds for the Central Universities (KYZ201146), and the National Science and Technology Ministry (2013AA102606-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Wu or Shao-Ling Zhang.

Additional information

Hui Chen, Yue Song and Lei-Ting Li contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Alignment of our consensus map with other published pear maps using common SSRs. LG1 to17 are from the pear consensus map constructed in this study (Fig. 1), in the center; Ba1 to 17 are from the map of European pear ‘Bartlett’ (Ba) map (Yamamoto et al. 2007), on the left; Ho1 to 17 are from Asian pear ‘Hosui’ (Ho) map linkage groups (Terakami et al. 2009), on the right. The linkage groups show common markers among the three maps, and the interval distances between two adjacent markers. Markers in red are those located in different groups in our consensus map compared with those of other pear maps. (DOC 76 kb)

Figure S2

Comparison of the pear consensus map with ‘Fiesta’ (F) and ‘Co-op 17’ × ‘Co-op 16’ (Co) apple maps with common SSR markers. Apple ‘Fiesta’ (F) (Silfverberg-Dilworth et al. 2006) and ‘Co-op 17’ × ‘Co-op 16’ (Co) maps (Han et al. 2011) are shown on the left and right respectively, the pear consensus map (LG) (Fig. 1) is shown in the center. The linkage groups show common markers among the three maps and the interval distances between two adjacent markers. Markers in red are those that were located in different groups in our consensus map compared with those of other pear maps. (DOC 107 kb)

ESM 3

(XLS 440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Song, Y., Li, LT. et al. Construction of a High-Density Simple Sequence Repeat Consensus Genetic Map for Pear (Pyrus spp.). Plant Mol Biol Rep 33, 316–325 (2015). https://doi.org/10.1007/s11105-014-0745-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0745-x

Keywords

Navigation