Skip to main content
Log in

Isolation and Characterization of Medicago truncatula U6 Promoters for the Construction of Small Hairpin RNA-Mediated Gene Silencing Vectors

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

RNA silencing using vector-based double-stranded RNA is an attractive strategy to suppress gene expression in plants. Especially, a short hairpin RNA (shRNA)-mediated approach is potent for specific target gene silencing. Here, shRNA expression vectors were constructed based on U6 small nuclear RNA (snRNA) gene promoters in Medicago truncatula. Ten U6 snRNA gene loci identified showed highly homologous sequences with those of other eukaryotes. Their RNA polymerase III-specific promoters had a conserved upstream sequence element and TATA box that were located approximately three helical DNA turns apart. The U6 promoters were also insensitive to α-amanitin, actively guiding transcription of fused GUS reporter gene fragments. When the U6 fusion constructs were introduced into M. truncatula via Agrobacterium rhizogenes-mediated transformation, GUS fragment transcripts were detected in nearly every transformed root albeit in varying amounts. Consistently, under the control of U6 promoters, constructs of 21-nucleotide-stem shRNAs directed silencing of GUS expression in transformed roots. Moreover, a phytoene desaturase gene (MtPDS3)-targeting 27-nucleotide-stem U6-shRNA constructs, when introduced into hairy roots, decreased the MtPDS3 transcript levels by approximately 80 % as a result of endogenous gene silencing, as verified by the presence of shPDS-derived siRNAs detected by stem-loop PCR. The U6 promoter-directed shRNA expression plasmids constructed herein can be a useful tool for functional gene analyses in this model legume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel S, Kiss T, Solymosy F (1989) Molecular analysis of eight U1 RNA gene candidates from tomato that could potentially be transcribed into U1 RNA sequence variants differing from each other in similar regions of secondary structure. Nucleic Acids Res 17:6319–6337

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–1151

    Article  PubMed  CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  • Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695–700

    Article  PubMed  CAS  Google Scholar 

  • Broude NB (2002) Stem-loop oligonucleotide: a robust tool for molecular biology and biotechnology. Trends Biotechnol 20:249–256

    Article  PubMed  CAS  Google Scholar 

  • Carbon P, Murgo S, Ebel J-P, Krol A, Tebb G, Mattaj IW (1987) A common octamer motif binding protein is involved in the transcription of U6 snRNA by RNA polymerase III and U2 snRNA by RNA polymerase II. Cell 51:71–79

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2010) Small RNAs—secrets and surprises of the genome. Plant J 61:941–958

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Connelly S, Marshallsay C, Leader D, Brown JWS, Filipowicz W (1994) Small nuclear RNA genes transcribed by either RNA polymerase II or RNA polymerase III in monocot plants share three promoter elements and use a strategy to regulate gene expression different from that used by their dicot plant counterparts. Mol Cell Biol 14:5910–5919

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg JE, Lund E (1991) How does III x II make U6. Science 254:1462–1463

    Article  PubMed  CAS  Google Scholar 

  • Danzeiser DA, Urso O, Kunkel GR (1993) Functional characterization of elements in a human U6 small nuclear RNA gene distal control region. Mol Cell Biol 13:4670–4678

    PubMed  CAS  Google Scholar 

  • Das G, Henning D, Wright D, Reddy R (1988) Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III. EMBO J 7:503–512

    PubMed  CAS  Google Scholar 

  • Domitrovich AM, Kunkel GR (2003) Multiple, dispersed human U6 small nuclear RNA genes with varied transcriptional efficiencies. Nucleic Acids Res 31:2344–2352

    Article  PubMed  CAS  Google Scholar 

  • Eamens A, Wang MB, Smith NA, Waterhouse PM (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  • Filipowicz W, Kiss T, Marshallsay C, Waibel F (1990) U-snRNA genes, U-snRNAs and U-snRNPs of higher plants. Mol Biol Rep 14:125–129

    Article  PubMed  CAS  Google Scholar 

  • Goodall GJ, Kiss T, Filipowicz W (1991) Nuclear RNA splicing and small nuclear RNAs and their genes in higher plants. Oxf Surv Plant Mol Cell Biol 7:255–296

    CAS  Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    Article  PubMed  CAS  Google Scholar 

  • Hernandez N (2001) Small nuclear RNA genes: a model system to study fundamental mechanisms of transcription. J Biol Chem 276:26733–26736

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kiss T, Marshallsay C, Filipowicz W (1991) Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro. Cell 65:517–526

    Article  PubMed  CAS  Google Scholar 

  • Kunkel GR (1991) RNA polymerase III transcription of genes that lack internal control regions. Biochim Biophys Acta 1088:1–9

    Article  PubMed  CAS  Google Scholar 

  • Kunkel GR, Hixson JD (1998) The distal elements, OCT and SPH, stimulate the formation of preinitiation complexes on a human U6 snRNA gene promoter in vitro. Nucleic Acids Res 26:1536–1543

    Article  PubMed  CAS  Google Scholar 

  • Li X, Jiang DH, Yong K, Zhang DB (2007) Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. J Integrative Plant Biol 49:222–229

    Article  CAS  Google Scholar 

  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−2ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Shi R, Tsao CC, Yi X, Li L, Chiang VL (2004) RNA silencing in plants by the expression of siRNA duplexes. Nucleic Acids Res 32:e171

    Article  PubMed  Google Scholar 

  • Marshallsay C, Connelly S, Filipowicz W (1992) Characterization of the U3 and U6 snRNA genes from wheat: U3 snRNA genes in monocot plants are transcribed by RNA polymerase III. Plant Mol Biol 19:973–983

    Article  PubMed  CAS  Google Scholar 

  • Marshallsay C, Kiss T, Filipowicz W (1990) Amplification of plant U3 and U6 snRNA gene sequences using primers specific for an upstream promoter element and conserved intragenic regions. Nucleic Acids Res 18:3459–3466

    Article  PubMed  CAS  Google Scholar 

  • McIntyre GJ, Fanning GC (2006) Design and cloning strategies for constructing shRNA expression vectors. BMC Biotechnol 6:1

    Article  PubMed  Google Scholar 

  • Melquist S, Bender J (2003) Transcription from an upstream promoter controls methylation signaling from an inverted repeat of endogenous genes in Arabidopsis. Genes Dev 17:2036–2047

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJM (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant Journal 53:674–690

    Article  PubMed  CAS  Google Scholar 

  • Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  Google Scholar 

  • Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  • Quandt HJ, Pühler A, Broer I (1993) Transgenic root nodules of Vicia hirsuta: a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant Microbe Interact 6:699–706

    Article  Google Scholar 

  • Reddy R, Henning D, Das G, Harless M, Wright D (1987) The capped U6 small nuclear RNA is transcribed by RNA polymerase III. J Biol Chem 262:75–81

    PubMed  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Sonti RV, Chiurazzi M, Wong D, Davies CS, Harlow GR, Mount DW, Signer ER (1995) Arabidopsis mutants deficient in T-DNA integration. Proc Natl Acad Sci USA 92:11786–11790

    Article  PubMed  CAS  Google Scholar 

  • Subramanian AR, Kaufmann M, Morgenstern B (2008) DIALIGN-TX: greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms Mol Biol 3:6

    Article  PubMed  Google Scholar 

  • Vankan P, Edoh D, Filipowicz W (1988) Structure and expression of the U5 snRNA gene of Arabidopsis thaliana. Conserved upstream sequence elements in plant U-RNA genes. Nucleic Acids Res 16:10425–10439

  • Vankan P, Filipowicz W (1989) A U-snRNA gene-specific upstream element and a −30 ‘TATA box’ are required for transcription of the U2 snRNA gene of Arabidopsis thaliana. EMBO J 8:3875–3882

    PubMed  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  Google Scholar 

  • Waibel F, Filipowicz W (1990) U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes. Nucleic Acids Res 18:3451–3458

    Article  PubMed  CAS  Google Scholar 

  • Wang BB, Brendel V (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 5:R102

    Article  PubMed  Google Scholar 

  • Wang MB, Helliwell CA, Wu LM, Waterhouse PM, Peacock WJ, Dennis ES (2008) Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA 14:903–913

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  CAS  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    Article  PubMed  CAS  Google Scholar 

  • Watson JM, Fusaro AF, Wang MB, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  PubMed  CAS  Google Scholar 

  • Yu JY, DeRuiter SL, Turner DL (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 99:6047–6052

    Article  PubMed  CAS  Google Scholar 

  • Yukawa Y, Felis M, Englert M, Stojanov M, Matousek J, Beier H, Sugiura M (2005) Plant 7SL RNA genes belong to type 4 of RNA polymerase III-dependent genes that are composed of mixed promoters. Plant J 43:97–106

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Douglas R. Cook (University of California, Davis, USA) for providing A. rhizogenes strain MSU440. A. rhizogenes strain ARqua1 and pRedRoot and pRNAi vectors (Limpens et al. 2004) were kindly provided by Dr. René Geurts (Wageningen University, Wageningen, the Netherlands). This work was supported in part by the National Research Foundation (NRF) and the Ministry of Education, Science and Technology of Korea (2006–0050138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Woo Nam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6.78 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, GB., Nam, YW. Isolation and Characterization of Medicago truncatula U6 Promoters for the Construction of Small Hairpin RNA-Mediated Gene Silencing Vectors. Plant Mol Biol Rep 31, 581–593 (2013). https://doi.org/10.1007/s11105-012-0528-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0528-1

Keywords

Navigation