Skip to main content
Log in

The Negative Regulator OsSDS1 Significantly Reduces Salt and Drought Tolerance in Transgenic Arabidopsis

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

In this report, we present data on OsSDS1 (Oryza sativa L. salt and drought sensitive gene 1)—an uncharacterized gene isolated from rice Pei’ai 64S (O. sativa L.). Expression of OsSDS1 was strongly up-regulated by a wide spectrum of stresses, including cold, drought, and heat, in different tissues at different developmental stages of rice, as revealed by both microarray and quantitative RT-PCR analyses. Subcellular localization revealed that an OsSDS1: GFP fusion protein was distributed to the nucleus. Expression of OsSDS1 conferred decreased tolerance to salt and drought in Arabidopsis thaliana, accompanied by altered expression of stress-responsive genes and altered K+/Na+ ratio. The results suggest that OsSDS1 may act as a negative regulator of salt and drought tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower mosaic virus

GFP:

Green fluorescent protein

Pn:

Net photosynthesis rate

qRT-PCR:

Quantitative real-time RT-PCR

WT:

Wild type

References

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13:146–150

    Article  PubMed  CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258

    Article  PubMed  CAS  Google Scholar 

  • Bi CL, Wen XJ, Zhang XY, Liu X (2010) Cloning and characterization of a putative CTR1 gene from wheat. Agric Sci China 9(9):1241–1250

    Article  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet Eng (N Y) 27:141–177

    Article  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Hadiarto T, Tran LS (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  PubMed  CAS  Google Scholar 

  • Jogaiah S, Govind SR, Tran LS (2012) System biology-based approaches towards understanding drought tolerance in food crops. Crit Rev Biotechnol. doi:10.3109/07388551.2012.659174

  • Lu GJ, Gao CX, Zheng XN, Han B (2009) Identification of OsbZIP72 as a positive regulator of ABA response and drought tolerance in rice. Planta 229(3):605–615

    Article  PubMed  CAS  Google Scholar 

  • Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) in China. J Exp Bot 61:3509–3517

    Article  PubMed  CAS  Google Scholar 

  • Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M (2010) The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63:484–498

    Article  CAS  Google Scholar 

  • Muñoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-Sogo B, Sanchez-Bel P, Flores FB, Atarés A, Angosto T, Pintor-Toro JA, Moreno V, Bolarin MC (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato. J Plant Physiol 169:459–468

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Qin F, Kodaira KS, Maruyama K, Mizoi J, Tran LS, Fujita Y, Morimoto K, Shinozaki K, Yamaguchi-Shinozaki K (2011) SPINDLY, a negative regulator of gibberellic acid signaling, is involved in the plant abiotic stress response. Plant Physiol 157:1900–1913

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S (2008) Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Mol Plant 1:538–551

    Article  PubMed  CAS  Google Scholar 

  • Qu GZ, Zang LN, Hu XL, Gao CQ, Zheng TC, Li KL (2012) Co-transfer of LEA and bZip genes from tamarix confers additive salt and osmotic stress tolerancein transgenic tobacco. Plant Mol Biol Rep 30:512–518

    Article  CAS  Google Scholar 

  • Ren Z, Zheng Z, Chinnusamy V, Zhu J, Cui X, Iida K, Zhu JK (2010) RAS1, a quantitative trait locus for salt tolerance and ABA sensitivity in Arabidopsis. Proc Natl Acad Sci USA 107:5669–5674

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Sato K, Berberich T, Miyazaki A, Ozaki R, Imai R, Kusano T (2005) LIP19, a basic region leucine zipper protein, is a Fos-like molecular switch in the cold signaling of rice plants. Plant Cell Physiol 46:1623–1634

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  PubMed  CAS  Google Scholar 

  • Tao Z, Kou YJ, Liu HB, Li XH, Xiao JH, Wang SP (2011) OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. J Exp Bot 62:4863–4874

    Article  PubMed  CAS  Google Scholar 

  • Varagona MJ, Schmidt RJ, Raikhel NV (1992) Nuclear localization signals required for nuclear targeting of the maize regulatory protein Opaque-2. Plant Cell 4:1213–1227

    PubMed  CAS  Google Scholar 

  • Varet A, Parker J, Tornero P, Nass N, Nürnberger T, Dangl JL, Scheel D, Lee J (2002) NHL25 and NHL3, two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense. Mol Plant Microbe In 15:608–616

    Article  CAS  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic Leucine Zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148:1938–1952

    Article  PubMed  CAS  Google Scholar 

  • Xu K, Hong P, Luo LJ, Xia T (2010) Overexpression of AtNHX1, a vacuolar Na+/H+ antiporter from Arabidopsis thaliana, in Petunia hybrida enhances salt and drought tolerance. J Plant Biol 52:453–461

    Article  Google Scholar 

  • Xu GY, Rocha P, Wang ML, Xu ML, Cui YC, Li LY, Zhu YX, Xia XJ (2011) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234:47–59

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba Y, Nanjo T, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Stress-responsive and developmental regulation of Delta(1)-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana. Biochem Biophys Res Commun 261:766–772

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Guo XP, Lei CL, Cheng ZJ, Lin QB, Wang JL, Wu FQ, Wang J, Wan JM (2011a) Overexpression of SlCZFP1, a novel TFIIIA-type Zinc Finger protein from tomato, confers enhanced cold tolerance in transgenic Arabidopsis and rice. Plant Mol Biol Rep 29:185–196

    Article  Google Scholar 

  • Zhang CL, Shi HJ, Chen L, Wang XM, Lu BB, Zhang SP, Liang Y, Liu RX, Qian J, Sun WW, You ZZ, Dong HS (2011b) Harpin-induced expression and transgenic overexpression of the phloem protein gene AtPP2-A1 in Arabidopsis repress phloem feeding of the green peach aphid Myzus persicae. BMC Plant Biol 11:11

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Nitrogen and Phosphorus cycling and manipulation for agro-ecosystems and the Knowledge Innovation program of the Chinese Academy of Sciences (KZCX2-YW-T07) and National Natural Science Foundation of China (31171536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinjie Xia.

Additional information

G. Xu and M. Li contributed equally to this work

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Li, M., Huang, M. et al. The Negative Regulator OsSDS1 Significantly Reduces Salt and Drought Tolerance in Transgenic Arabidopsis. Plant Mol Biol Rep 31, 517–523 (2013). https://doi.org/10.1007/s11105-012-0521-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0521-8

Keywords

Navigation