Skip to main content
Log in

Mapping Architectural, Phenological, and Fruit Quality QTLs in Apricot

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

The F1 population “Harostar” × “Rouge de Mauves” was used to perform a quantitative trait loci (QTL) mapping for tree architecture traits (i.e., tree diameter, total branch number, tree shape); time to initial reproductive bud break; and fruit quality traits (i.e., ground color, fruit form, soluble solid content) using data collected from 2010 to 2012. For architectural traits, interval mapping detected QTLs only in “Rouge de Mauves” on linkage group 1 for trunk diameter in 2010, on LG6 for total branch number in 2010, and on LG1 and LG5 for tree shape for both years 2010 and 2011 combined. QTLs were detected only in “Harostar” for time to initial reproductive bud break on LG1 and LG4 in 2011. For fruit quality traits, data were collected in 2011 and 2012. QTLs were identified on LG1 in 2011 and on LG4 in 2012 for soluble solid content, on LG3 for ground color in both years, on LG7 only in 2011, and on LG3 for fruit form in both years. The QTLs that we identified were compared to those previously identified in other Prunus spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alméras T, Costes E, Sales JC (2004) Identification of biomechanical factors involved in stem shape variability between apricot tree varieties. Ann Bot 93:455–468

    Article  PubMed  Google Scholar 

  • An L, Lei H, Shen X, Li T (2012) Identification and characterization of PpLFL, a homolog of FLORICAULA/LEAFY in peach (Prunus persica). Plant Mol Biol Rep. doi:10.1007/s11105-012-0459-x

  • Andrés MV, Durán JM (1999) Cold and heat requirements of the apricot (Prunus armeniaca L.) tree. J Hortic Sci Biotechnol 74:757–761

    Google Scholar 

  • Azodanlou R, Darbellay C, Luisier JL, Villettaz JC, Amadò R (2003) Development of a model for quality assessment of tomatoes and apricots. Food Sci Technol 36:223–233

    CAS  Google Scholar 

  • Ballester J, Socias I, Company R, Arús P, de Vicente MC (2001) Genetic mapping of a major gene delaying blooming time in almond. Plant Breed 120:268–270

    Article  CAS  Google Scholar 

  • Bassi D, Audergon JM (2006) Apricot breeding: update and perspectives. Acta Hort 701:279–294

    Google Scholar 

  • Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Brooks SJ, Moore JN, Murphy JB (1993) Quantitative and qualitative changes in sugar content of peach genotypes (Prunus persica (L.) Batsch). J Am Soc Hort Sci 118:97–100

    CAS  Google Scholar 

  • Cantìn CM, Gogorcena Y, Moreno MÀ (2009) Analysis of phenotypic variation of sugar profile in different peach and nectarine (Prunus persica (L.) Batsch) breeding progenies. J Sci Food Agric 89:1909–1917

    Article  Google Scholar 

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes. doi:10.1007/s11295-012-0477-8

  • Campoy JA, Ruiz D, Egea J, Rees DJG, Celton JM, Martínez-Gómez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 29:404–410

    Article  CAS  Google Scholar 

  • Campoy JA, Ruiz D, Allderman L, Cook N, Egea J (2012) The fulfillment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: an approach in Murcia (Spain) and the Western Cape (South Africa). Eur J Agron 37:43–55

    Article  Google Scholar 

  • Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    Article  CAS  Google Scholar 

  • Christen D, Ladner J, Monney P, Zürcher M, Rossier J (2006) In: Commission Professionnelle Pour l’examen des Variétés de Fruits (ed) Choix de variétés et de porte-greffes dans la production d’abricots, de pêches et de nectarines. Station de Recherche ACW, Wädenswil, pp 7–28

    Google Scholar 

  • Costes E, Lauri PE, Laurens F, Moutier N, Belouin A, Delort F, Legave JM, Regnard JL (2004) Morphological and architectural traits on fruit trees which could be relevant for genetic studies: a review. Acta Hort 663:349–356

    Google Scholar 

  • Costes E, Lauri PE, Regnard JL (2006) Analyzing fruit tree architecture: implications for tree management and fruit production. In: Janick J (ed) Horticultural reviews, vol 32. Wiley, New York, pp 1–61

    Google Scholar 

  • Couvillon GA, Erez A (1985) Influence of prolonged exposure to chilling temperatures on bud break and heat requirement for bloom of several fruit species. J Am Soc Hort Sci 110:47–50

    Google Scholar 

  • CPVO (2012) Protocol for distinctness, uniformity and stability tests. http://www.cpvo.europa.eu/main/en. Accessed February 2010

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach Prunus persica L. Batsch. Theor Appl Genet 98:18–31

    Article  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 00:1–13

    Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323–335

    Article  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTLs for sugar and organic acid content in peach (Prunus persica L. Batsch). Theor Appl Genet 105:145–159

    Article  PubMed  CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • FAOSTAT (2010) http://faostatclassic.fao.org. Accessed March 2012

  • Fournier D, Costes E, Salles JC, Segura V, Clauzel G, Audergon JM, Legave JM (2004) Analysis of morphological and architectural traits of apricot cultivars grown in different environmental conditions. Acta Hort 663:375–380

    Google Scholar 

  • Hormaza JI, Yamane H, Rodrigo J (2007) Apricot. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 171–187

    Google Scholar 

  • Illa E, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li X, Moing A, Lambert P, Dantec LL, Cao Z, Poëssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W (2011) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28:667–682

    Article  Google Scholar 

  • Infante R, Martínez-Gómez P, Predieri S (2011) Breeding for fruit quality in Prunus. In: Jenks MA, Bebeli PJ (eds) Breeding for fruit quality. Wiley, New York, pp 201–229

    Chapter  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map in Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Kenis K, Keulemans J (2007) Study of tree architecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208

    Article  CAS  Google Scholar 

  • Lammerts WE (1945) The breeding of ornamental edible peaches for mild climates. I. Inheritance of tree and flower characteristics. Am J Bot 32:53–61

    Article  Google Scholar 

  • Laurens F, Audergon J, Claverie J, Duval H, Germain E, Kervella J, Le Lezec M, Lauri PE, Lespinasse JM (2000) Integration of architectural types in French programmes of ligneous fruit species genetic improvement. Fruits 54:441–449

    Google Scholar 

  • Layne REC, Hunter DM (2003) ‘AC Harostar’ apricot. Hortscience 38:104–141

    Google Scholar 

  • Layne DR, Bassi D (2008) The peach: botany, production and uses. CABI Publishing, Cambridge

    Book  Google Scholar 

  • Leccese A, Bartolini S, Viti R (2012) Genotype, harvest season and cold storage influence on fruit quality and antioxidant properties of apricot. Int J food prop 15:864–879

    Article  CAS  Google Scholar 

  • Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    Article  PubMed  CAS  Google Scholar 

  • Leida C, Romeu JF, Garcia-Brunton J, Ríos G, Badenes ML (2012a) Gene expression analysis of chilling requirements for flower bud break in peach. Plant Breed 131:329–334

    Article  CAS  Google Scholar 

  • Leida C, Conesa A, Llácer G, Badenes ML, Ríos G (2012b) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    Article  PubMed  CAS  Google Scholar 

  • Lichou J, Jay M, Vaysse P, Lespinasse N (2003) Reconnaître les variétés d’abricots. In: Ctifl (ed), Paris, France, pp 1–92

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus domestica Borkh.). Plant Mol Biol 52:511–526

    Article  PubMed  CAS  Google Scholar 

  • McGuire RG (1992) Reporting of objective color measurements. Hortscience 27:1254–1255

    Google Scholar 

  • Mehlenbacher SA, Scorza R (1986) Inheritance of growth habit in progenies of ‘Compact Redhaven’ trees. Hortscience 21:124–126

    Google Scholar 

  • Meier U, Graf H, Hack H, Hess M, Kennel W, Klose R, Mappes D, Seipp D, Strauss R, Streif J, van den Boom T (1994) Phänologische Entwicklungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria ananassa Duch.). Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 46:141–153

    Google Scholar 

  • Miller S, Sorza R (2010) Response of two novel peach tree growth habits to in-row tree spacing, training system, and pruning: effect on growth and pruning. J Am Pomol Soc 64:199–217

    Google Scholar 

  • Monet R, Guye A, Roy M, Dachary N (1996) Peach Mendelian genetics, a short review and new results. Agronomy 16:321–329

    Article  Google Scholar 

  • Moreau-Rio MA, Roty C (1998) Le comportement des consommateurs d’abricots: analyse comparative avec d’autres fruits d’été. CTIFL, Paris

    Google Scholar 

  • Moreau-Rio MA (2006) Perception and consumption of apricots in France. Acta Hort 701:31–37

    Google Scholar 

  • Parolari G, Virgili R, Bolzoni L (1992) Analysis of sensory and instrumental data on apricot purees with pattern recognition techniques. Anal Chim Acta 259:257–265

    Article  CAS  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    Article  PubMed  CAS  Google Scholar 

  • Ruiz D, Egea J, Tomas-Barberan FA, Gil MI (2005) Carotenoids from new apricot (Punus armeniaca L.) varieties and their relationships with flesh and skin color. J Agric Food Chem 53:6368–6374

    Article  PubMed  CAS  Google Scholar 

  • Ruiz D, Campoy JA, Egea J (2007) Chilling and heat requirements of apricot cultivars for flowering. Environ Exp Bot 61:254–263

    Article  Google Scholar 

  • Ruiz D, Egea J (2008) Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163:143–158

    Article  CAS  Google Scholar 

  • Ruiz D, Lambert P, Audergon JM, Dondini L, Tartarini S, Adami M, Gennari F, Cervellati C, De Franceschi P, Sansavini S, Bureau S, Gouble B, Reich M, Renard CMGC, Bassi D, Testolin R (2010) Identification of QTLs for fruit quality traits in apricot. Acta Hort 862:587–592

    CAS  Google Scholar 

  • Sajer O, Scorza R, Dardick C, Zhebentyayeva T, Abbott AG, Horn R (2012) Development of sequence-tagged site markers linked to the pillar growth type in peach (Prunus persica). Plant Breed 131:186–192

    Article  CAS  Google Scholar 

  • Scorza R, Sherman WB (1996) Peaches. In: Janick J, Moore JN (eds) Fruit breeding, vol. 1: Tree and tropical fruits. Wiley, New York, pp 325–440

    Google Scholar 

  • Scorza R (2002) Genetic interactions of pillar (columnar), compact, and dwarf peach tree genotypes. J Am Soc Hortic Sci 127:254–261

    Google Scholar 

  • Segura V, Denancé C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50:159–171

    Article  PubMed  CAS  Google Scholar 

  • Socquet-Juglard D, Duffy B, Pothier JF, Christen D, Gessler C, Patocchi A (2012a) Identification of a major QTL for Xanthomonas arboricola pv. pruni resistance in apricot. Tree Genet Genomes (in press)

  • Socquet-Juglard D, Patocchi A, Pothier JF, Christen D, Duffy B (2012b) Evaluation of Xanthomonas arboricola pv. pruni inoculation techniques to screen for bacterial spot resistance in peach and apricot. J Plant Pathol 94:S1.91–96

    Google Scholar 

  • Souty M, Audergon JM, Chambroy Y (1990) Abricot: les critères de qualité. L’arboriculture Fruitière 430:16–24

    Google Scholar 

  • van Ooijen JW (2004) MapQTL®5, software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • van Ooijen JW (2006) JoinMap® 4.0, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Verde I, Quarta R, Cedrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592:291–297

    CAS  Google Scholar 

  • Werner DJ, Chaparro JX (2005) Genetic interactions of pillar and weeping peach genotypes. Hortscience 40:18–20

    Google Scholar 

  • Xu Y, Zhang L, Xie H, Zhang Y-Q, Oliveira MM, Ma R-C (2008) Expression analysis and genetic mapping of three SEPALLATA-like genes from peach (Prunus persica (L.) Batsch). Tree Genet Genomes 4:693–703

    Article  Google Scholar 

  • Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N, Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271–278

    Article  CAS  Google Scholar 

  • Zhebentyayeva T, Ledbetter C, Burgos L, Llácer G (2012) Apricot. In: Badenes ML, Byrne DH (eds) Fruit breeding. Handbook of plant breeding, vol 8. Springer, New York, pp 415–457

Download references

Acknowledgments

This project was funded by the Swiss Secretariat for Education and Research (SBF COST C08.0124) and was conducted within the European Science Foundation-funded research network COST Action 873. Patrick Magniant, Vincent Nussbaum, Rayan Mac Nulty and Xavier Pousse are gratefully acknowledged for their help in the field and laboratory experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Patocchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 40.7 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Socquet-Juglard, D., Christen, D., Devènes, G. et al. Mapping Architectural, Phenological, and Fruit Quality QTLs in Apricot. Plant Mol Biol Rep 31, 387–397 (2013). https://doi.org/10.1007/s11105-012-0511-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0511-x

Keywords

Navigation