Skip to main content
Log in

Induction Kinetics of a Novel Stress-related LEA Gene in Wheat

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Drought, high-salt, and low-temperature are major constraints to yield and quality of crops. Late embryogenesis abundant proteins (LEAs), characterized by high hydrophilic and thermal stabilities, stabilize the cell membrane structure and prevent oxidation. LEA genes mediate responses to abiotic stresses such as drought, salt, low-temperature, or ultraviolet radiation. In this study, TaLEA4, a Group III member from the LEA family, was cloned from a cDNA library of stress-treated wheat seedlings by in situ phage hybridization. The full length clone of TaLEA4 is 1,084 bp and contains a 570 bp open reading frame (ORF) encoding a 189-amino-acid protein. Multiple sequence alignment indicated that TaLEA4 had three incompletely repetitive 11-mer amino acid motifs and α-helix domains. The prediction of protein-sorting signals and localization sites in amino acid sequences (PSORT) showed that TaLEA4 has a nuclear localization signal (NLS) in the amino acid C-terminal sequence. A subcellular localization assay showed that the TaLEA4 protein accumulates in the cytoplasm and the nucleus. Specific expression in various wheat organs indicated that TaLEA4 mRNAs accumulates in abundance in stems under normal growing conditions. Expression profile analysis showed that TaLEA4 was highly induced by drought, and low and high temperatures. Isolation of the TaLEA4 promoter revealed a core promoter element and some cis-acting elements responding to abiotic stresses. This study provides a basis for more detailed functional analyses of LEA proteins, and suggests ways of improving wheat resistance by molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

NLS:

Nuclear localization signal

LEAs:

Late embryogenesis abundant proteins

ORF:

Open reading frame

Q-RT-PCR:

Quantitative RT-PCR

5′RACE:

Rapid amplification of 5′ cDNA end

RT-PCR:

Reverse transcription PCR.

References

  • Abdo M, Hisheh S, Arfuso F, Dharmarajan A (2008) The expression of tumor necrosis factor-alpha, its receptors and steroidogenic acute regulatory protein during corpus luteum regression. Reprod Biol Endocrinol 6:50

    Article  PubMed  Google Scholar 

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry 68:945–951

    PubMed  CAS  Google Scholar 

  • Baker J, Steele C, Dure L III (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–291

    Article  CAS  Google Scholar 

  • Basyuni M, Kinjo Y, Baba S, Shinzato N, Iwasaki H, Siregar EBM, Oku H (2011) Isolation of salt stress tolerance genes from roots of mangrove plant, Rhizophora stylosa Griff., using PCR-based suppression subtractive hybridization. Plant Mol Biol Rep 29:533–543

    Article  Google Scholar 

  • Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    Article  PubMed  CAS  Google Scholar 

  • Borovskii GB, Stupnikova IV, Antipina AI, Downs CA, Voinikov VK (2000) Accumulation of dehydrin-like proteins in the mitochondria of cold-treated plants. J Plant Physiol 156:797–800

    Article  CAS  Google Scholar 

  • Boschetti C, Pouchkina-Stantcheva N, Hoffmann P, Tunnacliffe A (2011) Foreign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae. J Exp Biol 214:59–68

    Article  PubMed  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 25:48–54

    Article  Google Scholar 

  • Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci USA 104:18073–18078

    Article  PubMed  CAS  Google Scholar 

  • Chandra Babu R, Zhang JS, Blum A, Ho T, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L) via cell membrane protection. Plant Sci 166:855–862

    Article  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Plant Physiol 97:795–803

    Article  CAS  Google Scholar 

  • Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    Article  PubMed  CAS  Google Scholar 

  • de Nazaré Monteiro Costa C, Brígida ABS, do Nascimento Borges B, de Menezes Neto MA, Carvalho LJCB, de Souza CRB (2011) Levels of MeLEA3, a cDNA sequence coding for an atypical late embryogenesis abundant protein in cassava, increase under in vitro salt stress treatment. Plant Mol Biol Rep 29:997–1005

    Article  Google Scholar 

  • Dure L III (1993) A repeating 11-mer amino acid motif and plant dessication. Plant J 3:363–369

    Article  PubMed  CAS  Google Scholar 

  • Dure L, Chlan C (1981) Developmental biochemistry of cotton seed embryogenesis and germination: XII Purification and properties of principal storage proteins. Plant Physiol 68:180–186

    Article  PubMed  CAS  Google Scholar 

  • Franco OL, Melo FR (2000) Osmoprotectants—a plant strategy in response to osmotic stress. Russ J Plant Physiol 47:137–144

    CAS  Google Scholar 

  • Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley HVA1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep 26:467–477

    Article  PubMed  CAS  Google Scholar 

  • Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

    Article  PubMed  CAS  Google Scholar 

  • Grelet J, Benamar A, Teyssier E, Avelange-Macherel MH, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137:157–167

    Article  PubMed  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genome 9:118

    Article  Google Scholar 

  • Kobayashi F, Ishibashi M, Takumi S (2008a) Transcriptional activation of Cor/Lea genes and increase in abiotic stress tolerance through expression of a wheat DREB2 homolog in transgenic tobacco. Transgenic Res 17:755–767

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi F, Maeta E, Terashima A, Kawaura K, Ogihara Y, Takumi S (2008b) Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. J Exp Bot 59:891–905

    Article  PubMed  CAS  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Planta 51:601–617

    Article  Google Scholar 

  • Kramer D, Breitenstein B, Kleinwächter M, Selmar D (2010) Stress metabolism in green coffee beans (Coffea arabica L): expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol 51:546–553

    Article  PubMed  CAS  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17:651–663

    Article  PubMed  CAS  Google Scholar 

  • Li L, Shimada T, Takahashi H, Ueda H, Fukao Y, Kondo M, Nishimura M, Hara-Nishimura I (2006) MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell 18:3535–3547

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Moons A, De Keyser A, Van Montagu M (1997) A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191:197–204

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144:513–523

    Article  PubMed  CAS  Google Scholar 

  • NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins: molecular characterization and functional analyses. Plant Physiol 129:1368–1381

    Article  PubMed  CAS  Google Scholar 

  • Prabu G, Kawar PG, Pagariya MC, Prasad DT (2011) Identification of water deficit stress upregulated genes in sugarcane. Plant Mol Biol Rep 29:291–304

    Article  Google Scholar 

  • Ramanjulu S, Bartels D (2002) Drought- and desiccation-induced modulation of gene expression in plant. Plant Cell Environ 25:141–151

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718

    Article  CAS  Google Scholar 

  • Richard S, Morency M, Drevet C, Jouanin L, Séguin A (2000) Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses. Plant Mol Biol 43:1–10

    Article  PubMed  CAS  Google Scholar 

  • Ried JL, Walker-Simmons MK (1993) Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiol 102:125–131

    PubMed  CAS  Google Scholar 

  • Roberts JK, DeSimone NA, Lingle WL, Dure LIII (1993) Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. Plant Cell 5:769–780

    PubMed  CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  PubMed  CAS  Google Scholar 

  • Speulman E, Salamini F (1995) GA3-regulated cDNAs from Hordeum vulgare leaves. Plant Mol Biol 28:915–926

    Article  PubMed  CAS  Google Scholar 

  • Straub PF, Shen Q, Ho TD (1994) Structure and promoter analysis of an ABA- and stress-regulated barley gene, HVA1. Plant Mol Biol 26:617–630

    Article  PubMed  CAS  Google Scholar 

  • Sunderlíková V, Wilhelm E (2002) High accumulation of legumin and Lea-like mRNAs during maturation is associated with increased conversion frequency of somatic embryos from pedunculate oak (Quercus robur L). Protoplasma 220:97–103

    Article  PubMed  Google Scholar 

  • Takumi K, Shimamura C, Kobayashi F (2008) Increased freezing tolerance through up-regulation of downstream genes via the wheat CBF gene in transgenic tobacco. Plant Physiol Biochem 46:205–211

    Article  PubMed  CAS  Google Scholar 

  • Tsuda K, Tsvetanov S, Takumi S, Mori N, Atanassov A, Nakamura C (2000) New members of a cold-responsive group-3 Lea/Rab-related Cor gene family from common wheat (Triticum aestivum L.). Genes Genet Syst 75:179–188

    Article  PubMed  CAS  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    Article  PubMed  CAS  Google Scholar 

  • Vaseva II, Grigorova BS, Simova-Stoilova LP, Demirevska KN, Feller U (2010) Abscisic acid and late embryogenesis abundant protein profile changes in winter wheat under progressive drought stress. Plant Biol 12:698–707

    Article  PubMed  CAS  Google Scholar 

  • Wang BF, Wang YC, Zhang DW, Li HY, Yang CP (2008) Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses. J For Res 19:58–62

    Article  CAS  Google Scholar 

  • Welin BV, Olson A, Nylander M, Palva ET (1994) Characterization and differential expression of Dhn/Lea/Rab-Like genes during cold-acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol 26:131–144

    Article  PubMed  CAS  Google Scholar 

  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:165–183

    Article  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2008a) Functions of the ERF transcription factor family in plants. Botany 86:969–977

    Article  CAS  Google Scholar 

  • Xu ZS, ZY N, Liu L, Nie LN, Li LC, Chen M, Ma YZ (2008b) Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genomics 280:497–508

    Article  PubMed  CAS  Google Scholar 

  • Xu ZS, Chen M, Li LC, Ma YZ (2011) Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol 53:570–585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported financially by the National Transgenic Key Project of MOA (2009ZX08002-008B and 2009ZX08009-083B) and National Natural Science Foundation of China (31171546). We are grateful to R.A. McIntosh, Plant Breeding Institute, University of Sydney, for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Shi Xu or You-Zhi Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, DH., Zhang, XH., Xu, ZS. et al. Induction Kinetics of a Novel Stress-related LEA Gene in Wheat. Plant Mol Biol Rep 30, 1313–1321 (2012). https://doi.org/10.1007/s11105-012-0446-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-012-0446-2

Keywords

Navigation