Skip to main content

Advertisement

Log in

Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

To test the relative importance of topography versus soil chemistry in defining tree species-habitat associations in a terra firme Amazonian forest.

Method

We evaluated habitat associations for 612 woody species using alternative habitat maps generated from topography and soil chemistry in the 25-ha Amacayacu Forest Dynamics Plot, Colombian Amazon. We assessed the ability of each habitat map to explain the community-level patterns of species-habitat associations using two methods of habitat randomization and different sample size thresholds (i.e., species’ abundance).

Results

The greatest proportion of species-habitat associations arose from topographically-defined habitats (55% to 63%) compared to soil chemistry-defined (19% to 40%) or topography plus soil chemistry-defined habitats (18% to 42%). Results were robust to the method of habitat randomization and to sample size threshold.

Conclusions

Our results demonstrate that certain environmental factors may be more influential than others in defining forest-level patterns of community assembly and that comparison of the ability of different environmental variables to explain habitat associations is a crucial step in testing hypotheses about the mechanisms underlying assembly. Our results point to topography-driven hydrological variation as a key factor structuring tree species distributions in what are commonly considered homogeneous Amazonian terra firme forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allié E, Pélissier R, Engel J, Petronelli P, Freycon V, Deblauwe V, Soucémarianadin L, Weigel J, Baraloto C (2015) Pervasive local-scale tree-soil habitat association in a tropical forest community. PLoS One 10:1–16. https://doi.org/10.1371/journal.pone.0141488

    Article  CAS  Google Scholar 

  • Altman N, Krzywinski M (2017) Clustering. Nat Methods 14:545–546

    Article  CAS  Google Scholar 

  • Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Joseph Wright S, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng X, Detto M, du X, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao Z, Hargrove WW, Hart TB, Hau BCH, He F, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang M, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li Y, Li X, Liu S, Lum SKY, Lutz JA, Ma K, Maddalena DM, Makana JR, Malhi Y, Marthews T, Mat Serudin R, McMahon SM, McShea WJ, Memiaghe HR, Mi X, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang W, Sri-ngernyuang K, Sukumar R, Sun IF, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrška T, Wang X, Wang X, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob Chang Biol 21:528–549. https://doi.org/10.1111/gcb.12712

    Article  PubMed  Google Scholar 

  • Baldeck CA, Harms KE, Yavitt JB, John R, Turner BL, Valencia R, Navarrete H, Davies SJ, Chuyong GB, Kenfack D, Thomas DW, Madawala S, Gunatilleke N, Gunatilleke S, Bunyavejchewin S, Kiratiprayoon S, Yaacob A, Supardi MNN, Dalling JW (2013) Soil resources and topography shape local tree community structure in tropical forests. Proc R Soc B Biol Sci 280:20122532. https://doi.org/10.1098/rspb.2012.2532

    Article  Google Scholar 

  • Baltzer JL, Thomas SC, Nilus R, Burslem DFRP (2005) Edaphic specialization in tropical trees: physiological correlates and responses to reciprocal transplantation. Ecology 86:3063–3077

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brum M, Vadeboncoeur MA, Ivanov V, Asbjornsen H, Saleska S, Alves LF, Penha D, Dias JD, Aragão LEOC, Barros F, Bittencourt P, Pereira L, Oliveira RS (2018) Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J Ecol 00:1–16. https://doi.org/10.1111/1365-2745.13022

  • Chamorro C (1989) Biología de los suelos del Parque Nacional Natural Amacayacu y zonas adyacentes (Amazonas, Colombia). Colomb Geográfica 15:45–63

    Google Scholar 

  • Chase JM (2014) Spatial scale resolves the niche versus neutral theory debate. J Veg Sci 25:319–322. https://doi.org/10.1111/jvs.12159

    Article  Google Scholar 

  • Chuyong GB, Kenfack D, Harms KE, Thomas DW, Condit R, Comita LS (2011) Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecol 212:1363–1374. https://doi.org/10.1007/s11258-011-9912-4

    Article  Google Scholar 

  • Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. J Ecol 86:101–112. https://doi.org/10.1046/j.1365-2745.1998.00238.x

    Article  Google Scholar 

  • Clifford P, Richardson S, Hémon D (1989) Assessing the significance of the correlation between two spatial processes. Biometrics 45:123–134

    Article  CAS  PubMed  Google Scholar 

  • Condit R (1996) Defining and mapping vegetation in mega-diverse tropical forests. Tree 11:4–5

    CAS  PubMed  Google Scholar 

  • Condit R (1998) Tropical forest census plots. Springer, Tokyo

    Book  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1992) Recruitment near conspecific adults and the maintenance of tree and shrub diversity in a neotropical forest. Am Nat 140:261–286. https://doi.org/10.1086/285412

    Article  CAS  PubMed  Google Scholar 

  • Condit R, Ashton PS, Baker P, Bunyavejchewin S, Gunatilleke S, Gunatilleke N, Hubbell SP, Foster RB, Itoh A, LaFrankie J, Lee HS, Losos E, Manokaran N, Sukumar R, Yamakura T (2000) Spatial patterns in the distribution of tropical tree species. Science 288:1414–1418. https://doi.org/10.1126/science.288.5470.1414

    Article  CAS  PubMed  Google Scholar 

  • Condit R, Pitman N, Leigh Jr EG, Chave J, Terborgh J, Foster RB, Núñez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science 295:666–669

  • Condit R, Engelbrecht BMJ, Pino D, Perez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci U S A 110:5064–5068. https://doi.org/10.1073/pnas.1218042110

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosme LHM, Schietti J, Costa FRC, Oliveira RS (2017) The importance of hydraulic architecture to the distribution patterns of trees in a central Amazonian forest. New Phytol 215:113–125. https://doi.org/10.1111/nph.14508

    Article  PubMed  Google Scholar 

  • Costa FRC, Magnusson WE, Luizao RC (2005) Mesoscale distribution patterns of Amazonian understorey herbs in relation to topography, soil and watersheds. J Ecol 93:863–878. https://doi.org/10.1111/j.1365-2745.2005.01020.x

    Article  CAS  Google Scholar 

  • Dalling JW, Schnitzer SA, Baldeck C, Harms KE, John R, Mangan SA, Lobo E, Yavitt JB, Hubbell SP (2012) Resource-based habitat associations in a neotropical liana community. J Ecol 100:1174–1182. https://doi.org/10.1111/j.1365-2745.2012.01989.x

    Article  Google Scholar 

  • Davies SJ, Tan S, LaFrankie JV, Potts MD (2005) Soil-related floristic variation in a hyperdiverse dipterocarp forest in Lambir Hills, Sarawak. In: Roubik DW, Sakai S, Hamid A (eds) Pollination ecology and the rain Forest diversity. Sarawak Studies. Springer-Verlag, New York, pp 22–34

    Chapter  Google Scholar 

  • Daws MI, Mullins CE, Burslem DFRP, Paton SR, Dalling JW (2002) Topographic position affects the water regime in a semideciduous tropical forest in Panamá. Plant Soil 238:79–90. https://doi.org/10.1023/A:1014289930621

    Article  CAS  Google Scholar 

  • de Castilho CV, Magnusson WE, de Araújo RNO, Luizão RCC, Luizão FJ, Lima AP, Higuchi N (2006) Variation in aboveground tree live biomass in a central Amazonian Forest: effects of soil and topography. For Ecol Manag 234:85–96. https://doi.org/10.1016/j.foreco.2006.06.024

    Article  Google Scholar 

  • Deblauwe V, Kennel P, Couteron P (2012) Testing pairwise association between spatially autocorrelated variables: a new approach using surrogate lattice data. PLoS One 7:e48766. https://doi.org/10.1371/journal.pone.0048766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detto M, Muller-Landau HC, Mascaro J, Asner GP (2013) Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation. PLoS One 8:e76296. https://doi.org/10.1371/journal.pone.0076296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duffy PB, Brando P, Asner GP, Field CB (2015) Projections of future meteorological drought and wet periods in the Amazon. Proc Natl Acad Sci 112:13172–13177. https://doi.org/10.1073/pnas.1421010112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duivenvoorden JF, Duque AJ (2010) Composition and diversity of northwestern Amazonian forests in a geoecological context. In: Hoorn C, Wesselingh F (eds) Amazonia landscape and species evolution: a look in the past. Wiley–Blackwell, Chichester, p 447

    Google Scholar 

  • Duivenvoorden J, Lips J (1995) A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia, vol 12. Tropenbos Foundation, Wageningen

    Google Scholar 

  • Duque A, Sánchez M, Cavelier J, Duivenvoorden JF (2002) Different floristic patterns of woody understorey and canopy plants in Colombian Amazonia. J Trop Ecol 18:499–525. https://doi.org/10.1017/S0266467402002341

    Article  Google Scholar 

  • Duque A, Cavelier J, Posada A et al (2003) Strategies of tree occupation at a local scale in terra firme forests in the Colombian Amazon. Biotropica 35:20–27

    Google Scholar 

  • Duque A, Muller-Landau HC, Valencia R, Cardenas D, Davies S, de Oliveira A, Pérez ÁJ, Romero-Saltos H, Vicentini A (2017) Insights into regional patterns of Amazonian forest structure, diversity, and dominance from three large terra-firme forest dynamics plots. Biodivers Conserv 26:669–686. https://doi.org/10.1007/s10531-016-1265-9

    Article  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82

    Article  CAS  PubMed  Google Scholar 

  • Fraley C, Raftery AE (2007) Model-based methods of classification: using the mclust software in chemometrics. J Stat Softw 18:1–13. https://doi.org/10.18637/jss.v018.i06

    Article  Google Scholar 

  • Gotelli NJ, Graves GR (1996) Null models in ecology. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Gunatilleke CVS, Gunatilleke IAUN, Esufali S, Harms KE, Ashton PMS, Burslem DFRP, Ashton PS (2006) Species–habitat associations in a Sri Lankan dipterocarp forest. J Trop Ecol 22:371–384. https://doi.org/10.1017/S0266467406003282

    Article  Google Scholar 

  • Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959. https://doi.org/10.1046/j.0022-0477.2001.00615.x

    Article  Google Scholar 

  • Hendershot WH, Lalande H, Duquette M (2008) Ion exchange and exchangeable cations. In: Carter MR, Gregorich EG (eds) Soil Sampling and Methods of Analysis, Second Edi. Canadian Society of Soil Science and CRC Press, Boca Raton, pp 197–206

    Google Scholar 

  • Higgins MA, Ruokolainen K, Tuomisto H, Llerena N, Cardenas G, Phillips OL, Vásquez R, Räsänen M (2011) Geological control of floristic composition in Amazonian forests. J Biogeogr 38:2136–2149. https://doi.org/10.1111/j.1365-2699.2011.02585.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Hogan JA, Zimmerman JK, Uriarte M, Turner BL, Thompson J (2016) Land-use history augments environment–plant community relationship strength in a Puerto Rican wet forest. J Ecol 104:1466–1477. https://doi.org/10.1111/1365-2745.12608

    Article  Google Scholar 

  • Holdridge LR (1978) Ecología basada en zonas de vida. IICA, San José, pp 1978–1982

    Google Scholar 

  • Honorio EN, Baker TR, Phillips OL et al (2009) Multi-scale comparisons of tree composition in Amazonian terra firme forests. Biogeosciences 6:2719–2731. https://doi.org/10.5194/bg-6-2719-2009

    Article  Google Scholar 

  • Hoorn C (1994) An environmental reconstruction of the paleo-Amazon river system (Midle-Late Miocene, NW, Amazonia). Palaeogeogr Palaeoclimatol Palaeoecol 112:187–238

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University press, Princeton

    Google Scholar 

  • Hubbell SP, Foster RB (1986) Commonness and rarity in a Neotropical forest: implications for tropical tree conservation. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer associates, Sunderland, Mass., pp 205–231

    Google Scholar 

  • Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, Loo de Lao S (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a Neotropical Forest. Science 283:554–557

  • Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Palmiotto PA, LaFrankie JV, Ashton PS, Lee HS (2003) Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rainforest. Ecol Res 18:307–320. https://doi.org/10.1046/j.1440-1703.2003.00556.x

    Article  Google Scholar 

  • Itoh A, Ohkubo T, Nanami S, Tan S, Yamakura T (2010) Comparison of statistical tests for habitat associations in tropical forests: a case study of sympatric dipterocarp trees in a Bornean forest. For Ecol Manag 259:323–332. https://doi.org/10.1016/j.foreco.2009.10.022

    Article  Google Scholar 

  • John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proc Natl Acad Sci U S A 104:864–869. https://doi.org/10.1073/pnas.0604666104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jucker T, Bongalov B, Burslem DFRP, Nilus R, Dalponte M, Lewis SL, Phillips OL, Qie L, Coomes DA (2018) Topography shapes the structure, composition and function of tropical forest landscapes. Ecol Lett 21:989–1000. https://doi.org/10.1111/ele.12964

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenfack D, Chuyong GB, Condit R, Russo SE, Thomas DW (2014) Demographic variation and habitat specialization of tree species in a diverse tropical forest of Cameroon. For Ecosyst 1:22. https://doi.org/10.1186/s40663-014-0022-3

    Article  Google Scholar 

  • Laurance WF, Fearnside PM, Laurance SG, Delamonica P, Lovejoy TE, Rankin-de Merona JM, Chambers JQ, Gascon C (1999) Relationship between soils and Amazon forest biomass: a landscape scale study. For Ecol Manag 118:127–138. https://doi.org/10.1016/S0378-1127(98)00494-0

    Article  Google Scholar 

  • Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009) Ecological information from satial patterns of plants: insights from point process theory. J Ecol 97:616–628. https://doi.org/10.1111/j.1365-2745.2009.01510.x

    Article  Google Scholar 

  • Legendre P, Legendre LFJ (2012) Numerical Ecology. Elsevier

  • Lloyd J, Domingues TF, Schrodt F, Ishida FY, Feldpausch TR, Saiz G, Quesada CA, Schwarz M, Torello-Raventos M, Gilpin M, Marimon BS, Marimon-Junior BH, Ratter JA, Grace J, Nardoto GB, Veenendaal E, Arroyo L, Villarroel D, Killeen TJ, Steininger M, Phillips OL (2015) Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function. Biogeosciences 12(22):6529–6571

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, et al (2016) vegan: Community Ecology Package

  • Oliveira RS, Costa FRC, Baalen E, Jonge A, Bittencourt PR, Almanza Y, Barros Fd, Cordoba EC, Fagundes MV, Garcia S, Guimaraes Z, Hertel M, Schietti J, Rodrigues‐Souza J, Poorter L (2018) Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. https://doi.org/10.1111/nph.15463

  • Peay KG, Russo SE, Mcguire KL et al (2015) Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol Lett 18:807–816. https://doi.org/10.1111/ele.12459

    Article  PubMed  Google Scholar 

  • Phillips OL, Núñez Vargas P, Monteagudo AL et al (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775. https://doi.org/10.1046/j.1365-2745.2003.00815.x

    Article  Google Scholar 

  • Phillips OL, Baker TR, Arroyo L, Higuchi N, Killeen TJ, Laurance WF, Lewis SL, Lloyd J, Malhi Y, Monteagudo A, Neill DA, Nunez Vargas P, Silva JNM, Terborgh J, Vasquez Martinez R, Alexiades M, Almeida S, Brown S, Chave J, Comiskey JA, Czimczik CI, di Fiore A, Erwin T, Kuebler C, Laurance SG, Nascimento HEM, Olivier J, Palacios W, Patino S, Pitman NCA, Quesada CA, Saldias M, Torres Lezama A, Vinceti B (2004) Pattern and process in Amazon tree turnover, 1976-2001. Philos Trans R Soc B Biol Sci 359:381–407. https://doi.org/10.1098/rstb.2003.1438

    Article  CAS  Google Scholar 

  • Pitman NCA, Terborgh J, Silman MR, Nunez PV (1999) Tree species distributions in an upper Amazonian forest. Ecology 80:2651–2661

    Article  Google Scholar 

  • Pitman NCA, Terborgh JW, Silman MR, Núñez V P, Neill DA, Cerón CE, Palacios WA, Aulestia M (2001) Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82:2101–2117. https://doi.org/10.1890/0012-9658(2001)082[2101:DADOTS]2.0.CO;2

  • Poulsen DA, Balslev H (1991) Abundance and cover of ground herbs in an Amazonian rain forest. J Veg Sci 2:315–322. https://doi.org/10.2307/3235922

    Article  Google Scholar 

  • Prieto A (1994) Análisis estructural y florístico de la vegetación de la isla Mocagua, río Amazonas (Amazonas, Colombia). Universidad Nacional de Colombia, Bogotá

    Google Scholar 

  • Quesada CA, Lloyd J (2016) Soil–vegetation interactions in Amazonia. In: Nagy L, Forsberg BR, Artaxo P (eds) Interactions between biosphere. Atmosphere and Human Land Use in the Amazon Basin. Springer, Berlin, Heidelberg, pp 267–299

    Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M, Baker TR, Phillips OL, Patiño S, Czimczik C, Hodnett MG, Herrera R, Arneth A, Lloyd G, Malhi Y, Dezzeo N, Luizão FJ, Santos AJB, Schmerler J, Arroyo L, Silveira M, Priante Filho N, Jimenez EM, Paiva R, Vieira I, Neill DA, Silva N, Peñuela MC, Monteagudo A, Vásquez R, Prieto A, Rudas A, Almeida S, Higuchi N, Lezama AT, López-González G, Peacock J, Fyllas NM, Alvarez Dávila E, Erwin T, di Fiore A, Chao KJ, Honorio E, Killeen T, Peña Cruz A, Pitman N, Núñez Vargas P, Salomão R, Terborgh J, Ramírez H (2009a) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties. Biogeosci Discuss 6:3993–4057. https://doi.org/10.5194/bgd-6-3993-2009

    Article  Google Scholar 

  • Quesada CA, Lloyd J, Schwarz M, Patiño S, Baker TR, Czimczik C, Fyllas NM, Martinelli L, Nardoto GB, Schmerler J, Santos AJB, Hodnett MG, Herrera R, Luizão FJ, Arneth A, Lloyd G, Dezzeo N, Hilke I, Kuhlmann I, Raessler M, Brand WA, Geilmann H, Moraes Filho JO, Carvalho FP, Araujo Filho RN, Chaves JE, Cruz Junior OF, Pimentel TP, Paiva R (2009b) Chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosci Discuss 6:3923–3992. https://doi.org/10.5194/bgd-6-3923-2009

    Article  Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440. https://doi.org/10.5194/bg-8-1415-2011

    Article  CAS  Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Lezama AT, Lloyd G, López-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Núñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, Santos AJB, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246. https://doi.org/10.5194/bg-9-2203-2012

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing

  • Reynolds AP, Richards G, De La Iglesia B, Rayward-Smith VJ (2006) Clustering rules: a comparison of partitioning and hierarchical clustering algorithms. J Math Model Algorithms 5:475–504. https://doi.org/10.1007/s10852-005-9022-1

    Article  Google Scholar 

  • Ricklefs RE (1977) Environmental heterogeneity and plant species diversity: a hypothesis. Am Nat 111:376–381

    Article  Google Scholar 

  • Russo SE, Augspurger CK (2004) Aggregated seed dispersal by spider monkeys limits recruitment to clumped patterns in Virola calophylla. Ecol Lett 7:1058–1067. https://doi.org/10.1111/j.1461-0248.2004.00668.x

    Article  Google Scholar 

  • Russo SE, Davies SJ, King DA, Tan S (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. J Ecol 93:879–889. https://doi.org/10.1111/j.1365-2745.2005.01030.x

    Article  CAS  Google Scholar 

  • Russo SE, Potts MD, Davies S, Tan S (2007) Determinants of tree species distributions: comparing the roles of dispersal, seed size, and soil specialization in a Bornean rain forest. In: Dennis A, Green R, Schupp EW, Wescott D (eds) Seed dispersal: theory and its application in a changing world. CAB International, Wallingford, pp 499–518

    Chapter  Google Scholar 

  • Russo SE, Cannon WL, Elowsky C, Tan S, Davies SJ (2010) Variation in leaf stomatal traits of 28 tree species in relation to gas exchange along an edaphic gradient in a Bornean rain forest. Am J Bot 97:1109–1120. https://doi.org/10.3732/ajb.0900344

    Article  PubMed  Google Scholar 

  • Schietti J, Emilio T, Rennó CD, Drucker DP, Costa FRC, Nogueira A, Baccaro FB, Figueiredo F, Castilho CV, Kinupp V, Guillaumet JL, Garcia ARM, Lima AP, Magnusson WE (2014) Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Plant Ecol Divers 7:241–253. https://doi.org/10.1080/17550874.2013.783642

    Article  Google Scholar 

  • Schreiber T, Schmitz A (2000) Surrogate time series. Phys D Nonlinear Phenom 142:346–382

    Article  Google Scholar 

  • Schupp EW, Milleron T, Russo S (2002) Dissemination limitation and the origin and maintenance of species-rich tropical forests. In: Seed dispersal and frugivory: Ecology, evolution and conservation, pp 19–33

    Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, 2nd edn. Natural Resources Conservation Service, U.S Department of Agriculture Handbook

  • Sombroek W (2000) Amazon landforms and soils in relation to biological diversity. Acta Amaz 30:81–81. https://doi.org/10.1590/1809-43922000301100

    Article  Google Scholar 

  • Svenning J-C (1999) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. J Ecol 87:55–65. https://doi.org/10.1046/j.1365-2745.1999.00329.x

    Article  Google Scholar 

  • ter Steege H, Pitman N, Sabatier D, Castellanos H, van der Hout P, Daly DC, Silveira M, Phillips O, Vasquez R, van Andel T, Duivenvoorden J, de Oliveira AA, Ek R, Lilwah R, Thomas R, van Essen J, Baider C, Maas P, Mori S, Terborgh J, NúÑez Vargas P, Mogollón H, Morawetz W (2003) A spatial model of tree alfa-diversity and tree density for the Amazon. Biodivers Conserv 12:2255–2277

    Article  Google Scholar 

  • ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prévost MF, Spichiger R, Castellanos H, von Hildebrand P, Vásquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  PubMed  Google Scholar 

  • Thessler S, Ruokolainen K, Tuomisto H, Tomppo E (2005) Mapping gradual landscape-scale floristic changes in Amazonian primary rain forests by combining ordination and remote sensing. Glob Ecol Biogeogr 14:315–325. https://doi.org/10.1111/j.1466-822X.2005.00158.x

    Article  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton university press

  • Tuomisto H, Ruokolainen K, Aguilar M, Sarmiento A (2003a) Floristic patterns along a 43 km long transect in an Amazonian rain forest. J Ecol 91:743–756. https://doi.org/10.1046/j.1365-2745.2003.00802.x

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003b) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299:241–244. https://doi.org/10.1126/science.1078037

    Article  CAS  PubMed  Google Scholar 

  • Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernandez C, Romoleroux K, Losos E, Magard E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. J Ecol 92:214–229. https://doi.org/10.1111/j.0022-0477.2004.00876.x

    Article  Google Scholar 

  • Venema V, Meyer S, Garcìa SG, Kniffka A, Simmer C, Crewell S, Löhnert U, Trautmann T, Macke A (2006) Surrogate cloud fields generated with the iterative amplitude adapted Fourier transform algorithm. Tellus 58A:104–120. https://doi.org/10.1111/j.1600-0870.2006.00160.x

    Article  Google Scholar 

  • Vincent JB, Turner BL, Alok C, Novotny V, Weiblen GD, Whitfeld TJS (2018) Tropical forest dynamics in unstable terrain : a case study from New Guinea. J Trop Ecol 34:1–19. https://doi.org/10.1017/S0266467418000123

    Article  Google Scholar 

  • Zhang T, Niinemets Ü, Sheffield J, Lichstein JW (2018) Shifts in tree functional composition amplify the response of forest biomass to climate. Nature 556:99–102. https://doi.org/10.1038/nature26152

    Article  CAS  PubMed  Google Scholar 

  • Zuleta D, Duque A, Cardenas D, Muller-Landau HC, Davies SJ (2017) Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98:2538–2546. https://doi.org/10.1002/ecy.1950

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Convocatoria Nacional para el Apoyo a Proyectos de Investigación y Creación Artística de la Universidad Nacional de Colombia 2017-2018 grant 38821 to A. Duque. We would like to thank Parques Nacionales Naturales de Colombia, in particular to Eliana Martínez and staff members of the Amacayacu Natural National Park. We are very grateful for the assistance of our coworkers in Comunidad de Palmeras and the students of forest engineering from the Universidad Nacional de Colombia in collecting the tree census data. We also thank the Center for Tropical Forest Science-Forest Global Earth Observatory (CTFS-Forest- GEO) of the Smithsonian Tropical Research Institute for partial support of the plot census. Many thanks are extended to J. Dalling and C. Baldeck for assistance with kriging, T. Romero and S. Ramirez for assistance with soil sampling, and D. Agudo, A. Bielnicka, and I. Torres for laboratory support. Analyses for this manuscript were first advanced and discussed at two CTFS-ForestGEO Workshops supported by the NSF grants 1545761 and 1354741 to S.J. Davies. D. Zuleta was supported by National Doctoral Scholarship COLCIENCIAS (647, 2015-II). Finally, we are very grateful to Rafael S. Oliveira and two anonymous referees for the comments made to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Zuleta.

Additional information

Responsible Editor: Rafael S. Oliveira.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuleta, D., Russo, S.E., Barona, A. et al. Importance of topography for tree species habitat distributions in a terra firme forest in the Colombian Amazon. Plant Soil 450, 133–149 (2020). https://doi.org/10.1007/s11104-018-3878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-018-3878-0

Keywords

Navigation