Skip to main content
Log in

Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

We characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.

Methods

Field-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.

Results

One-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.

Conclusions

These results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afkhami ME, Rudgers JA (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416

    Article  PubMed  Google Scholar 

  • Aschehoug ET, Metlen KL, Callaway RM, Newcombe G (2012) Fungal endophytes directly increase the competitive effects of an invasive forb. Ecol 93:3–8

    Article  Google Scholar 

  • Baker KF, Smith SH (1966) Dynamics of seed transmission of plant pathogens. Annu Rev Phytopathol 4:311–332

    Article  Google Scholar 

  • Bloomberg WJ (1966) The occurrence of endophytic fungi in Douglas-fir seedlings and seed. Can J Bot 44:413–420

    Article  Google Scholar 

  • Christian N, Whitaker BK, Clay K (2015) Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front Microbiol 6:869

    Article  PubMed  PubMed Central  Google Scholar 

  • Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia 73:358–362

    Article  CAS  PubMed  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:99–127

    Article  Google Scholar 

  • Clay K, Shearin ZRC, Bourke KA, Bickford WA, Kowalski KP (2016) Diversity of fungal endophytes in non-native Phragmites australis in the Great Lakes. Biol Invasions 18:2703–2716

    Article  Google Scholar 

  • Compant S, Mitter B, Coli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microbial Ecol 62:188–197

    Article  Google Scholar 

  • Coombs JT, Franco CM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Olmo-Ruiz M, Arnold AE (2014) Interannual variation and host affiliations of endophytic fungi associated with ferns at la Selva, Costa Rica. Mycol 106:8–21

    Article  Google Scholar 

  • Deshpande V, Wang Q, Greenfield P, Charleston M, Porras-Alfaro A, Kuske CR, Cole JR, Midegley DJ, Tran-Dinh N (2016) Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1–5

    Article  PubMed  Google Scholar 

  • Donald T, Roth S, Deyrup ST, Gloer JB (2005) A protective endophyte of maize: Acremonium zeae antibiotics inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycol Res 109:610–618

    Article  Google Scholar 

  • Ernst M, Mendgen KW, Wirsel SG (2003) Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms. Mol Plant-Microbe Interact 16:580–587

    Article  CAS  PubMed  Google Scholar 

  • Ewald PW (1987) Transmission modes and evolution of the parasitism-mutualism continuum. Ann N Y Acad Sci 503:295–306

    Article  CAS  PubMed  Google Scholar 

  • Flory SL, Clay K (2013) Pathogen accumulation and long-term dynamics of plant invasions. J Ecol 101:607–613

    Article  Google Scholar 

  • Ganley RJ, Newcombe G (2006) Fungal endophytes in seeds and needles of Pinus monticola. Mycol Res 110:318–327

    Article  PubMed  Google Scholar 

  • Gundel PE, Maseda PH, Ghersa CM, Benech-Arnold RL (2006) Effects of the Neotyphodium endophyte fungus on dormancy and germination rate of Lolium multiflorum seeds. Austral Ecol 31:767–775

    Article  Google Scholar 

  • Guo W, Lambertini C, Li X, Meyerson L, Brix H (2013) Invasion of old world Phragmites australis in the new world: precipitation and temperature patterns combined with human influences redesign the invasive niche. Glob Chang Biol 19:3406–3422

    PubMed  Google Scholar 

  • Haslam SM (1972) Phragmites communis Trin. (Arundo phragmites L., Phragmites australis (Cav.) Trin. Ex Steudel). J Ecol 60:585–610

    Article  Google Scholar 

  • Hodgson S, Cates C, Hodgson J, Morley NJ, Sutton BC, Gange AC (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Holdredge C, Bertness MD (2011) Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biol Inv 13:423–433

    Article  Google Scholar 

  • Keller BEM (2000) Plant diversity in Lyrthrum, Phragmites, and Typha marshes, Massassachussets, U.S.A. wetlands. Ecol Manag 8:391–401

    Google Scholar 

  • Kessler AC, Merchant JW, Allen CR, Schultz SD (2011) Impacts of invasive plants on Sandhill Crane (Grus canadensis) roosting habitat. Inv Plant Sci Manag 4:369–377

    Article  Google Scholar 

  • Kettenring KM, Whigham DF (2009) Seed viability and seed dormancy of non-native Phragmites australis in suburbanized and forested watersheds of the Chesapeake Bay, USA. Aquatic Bot 91:199–204

    Article  Google Scholar 

  • Kirk H, Paul J, Straka J, Freeland JR (2011) Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America. Amer J Bot 98:1180–1190

    Google Scholar 

  • Klaedtke S, Jacques M-A, Raggi L, Préveaux A, Bonneau S, Negri V, Chable V, Barret M (2015) Terroir is a key driver of seed-associated microbial assemblages. Environ Microbiol 18:1792–1804

    Article  PubMed  Google Scholar 

  • Kleczewski NM, Bauer JT, Bever JD, Clay K, Reynolds HL (2012) A survey of endophytic fungi of switchgrass (Panicum virgatum) in the Midwest, and their putative roles in plant growth. Fungal Ecol 5:521–529

    Article  Google Scholar 

  • Knevel IC, Lans T, Menting FB, Hertling UM, van der Putten WH (2004) Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa. Oecologia 141:502–510

    Article  PubMed  Google Scholar 

  • Kowalski KP, Bacon C, Bickford W, Braun H, Clay K, Leduc-Lapierre M, Lillard E, McCormick M, Nelson E, Torres M, White J, Wilcox DA (2015) Advancing the science of microbial symbiosis to support invasive species management: a case study on Phragmites in the Great Lakes. Front Microbiol 6:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Lipsitch M, Nowak MA, Ebert D, May RM (1995) The population dynamics of vertically and horizontally transmitted parasites. Proc R Soc Lond B Biol Sci 260:321–327

    Article  CAS  Google Scholar 

  • Mack RN (1996) Predicting the identity and fate of plant invaders: emergent and emerging approaches. Biol Conserv 78:107–121

    Article  Google Scholar 

  • Martin T (1996) Seedborne diseases and their control: principles and practice. Crop Prot 15:594

    Article  Google Scholar 

  • Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625–627

    Article  CAS  PubMed  Google Scholar 

  • Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10:1801–1810

    Article  PubMed  Google Scholar 

  • Newcombe G, Shipunov A, Eigenbrode SD, Raghavendra AKH, Ding H, Anderson CL, Menjivar R, Crawford M, Schwarzländer M (2009) Endophytes influence protection and growth of an invasive plant. Commun Integr Biol 2:29–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunez MA, Horton TR, Simberloff D (2009) Lack of belowground mutualisms hinders Pinaceae invasions. Ecology 90:2352–2359

    Article  PubMed  Google Scholar 

  • Oono R, Lefèvre E, Simha A, Lutzoni F (2015) A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol 119:917–928

    Article  PubMed  PubMed Central  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    Article  CAS  PubMed  Google Scholar 

  • Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol 28:299–314

    Article  Google Scholar 

  • Parker IM, Gilbert GS (2004) The evolutionary ecology of novel plant-pathogen interactions. Ann Rev Ecol Evol Syst 35:675–700

    Article  Google Scholar 

  • Parsa S, García-Lemos AM, Castillo K, Ortiz V, López-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biol 120:783–790

    Article  PubMed  PubMed Central  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Phytopathology 49:291

    Article  CAS  Google Scholar 

  • Price AL, Fant JB, Larkin DJ (2013) Ecology of native vs. introduced Phragmites australis (common reed) in Chicago-area wetlands. Wetlands 34:369–377

    Article  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Ann Rev Ecol Evol Syst 40:699–715

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org

    Google Scholar 

  • Reinhart KO, Packer A, Van der Putten WH, Clay K (2003) Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol Lett 6:1046–1050

    Article  Google Scholar 

  • Rheeder JP, Marasas WFO, Van Wyk PS (1990) Fungal associations in corn kernels and effects on germination. Phytopathology 80:131–134

    Article  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rudgers JA, Clay K (2008) An invasive plant–fungal mutualism reduces arthropod diversity. Ecol Lett 11:831–840

    Article  PubMed  Google Scholar 

  • Rudgers JA, Mattingly WB, Koslow JM (2005) Mutualistic fungus promotes plant invasion into diverse communities. Oecologia 144:463–471

    Article  PubMed  Google Scholar 

  • Saikkonen K, Ruokolainen K, Huitu O, Gundel PE, Piltti T, Hamilton CE, Helander M (2013) Fungal endophytes help prevent weed invasions. Agric Ecosyst Envir 165:1–5

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc Nat Acad Sci 99:2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saltonstall K (2003) Genetic variation among North American populations of Phragmites australis: implications for management. Estuaries 26:444–451

    Article  Google Scholar 

  • Saltonstall K, Burdick D, Miller S, Smith B (2005) Native and non-native Phragmites: challenges in identification, research, and management of the common reed. National Estuarine Research Reserve Technical Report Series 2005

  • Schardl CL, Clay K (1997) Evolution of mutualistic endophytes from plant pathogens. Plant Relationships Part B:221–238

  • Scheffer RP (1997) The nature of disease in plants. Cambridge University Press, Cambridge

    Google Scholar 

  • Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97:1447–1450

    Article  Google Scholar 

  • Shen XY, Cheng YL, Cai CJ, Fan L, Gao J, Hou CL (2014) Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds. PLoS One 9:e95838

    Article  PubMed  PubMed Central  Google Scholar 

  • Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Ann Rev Ecol Evol Syst 45:89–113

    Article  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Reports 7:40–50

    Article  Google Scholar 

  • U’Ren JM, Lutzoni F, Miadlikowska J, Laetsch AD, Arnold AE (2012) Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot 99:898–914

    Article  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee SJ, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18:315–322

    Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Windham L, Lathrop LG Jr (1999) Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the MullicaRiver, New Jersey. Estuaries 22:927–935

    Article  Google Scholar 

  • Wunderle J, Leclerque A, Schaffrath U, Slusarenko A, Koch E (2012) Assessment of the loose smut fungi (Ustilago nuda and U. tritici) in tissues of barley and wheat by fluorescence microscopy and real-time PCR. Eur J Plant Pathol 133:865–875

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the USGS cooperative agreement G13 AC00285 to Indiana University. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. We thank the Clay Lab group at Indiana University, Ray Callaway (University of Montana), and two anonymous reviewers for their useful comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Clay.

Additional information

Responsible Editor: Eric B. Nelson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shearin, Z.R.C., Filipek, M., Desai, R. et al. Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 422, 183–194 (2018). https://doi.org/10.1007/s11104-017-3241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3241-x

Keywords

Navigation