Skip to main content
Log in

Effect of water entrapment by a hydrogel on the microstructural stability of artificial soils with various clay content

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Interactions between soil constituents define soil microstructural stability and are enhanced by swellable organic substances (hydrogels) such as extracellular polymeric substances (EPS), root mucilage or synthetic polymers. This study aims to identify the still largely unknown mechanisms behind hydrogel-induced soil microstructural stability. We hypothesized that soil microstructural stability increased with increasing limitation of hydrogel swelling between soil particles.

Methods

One- and two-dimensional 1H proton nuclear magnetic resonance relaxometry (1H–NMR relaxometry) measurements were performed with untreated and polyacrylic-acid (PAA) treated artificial soils at various clay content and PAA concentrations. The results on the water distribution and water mobility in the artificial soils were related to their microstructural stability as measured by rheology.

Results

PAA treatment significantly increased soil microstructural stability up to five times, especially at high clay content. Soil microstructural stability increased with decreasing rotational mobility of water in the PAA-treated artificial. At the two highest PAA concentrations, the microstructural stability was the highest, although the mobility of water molecules was not further restricted.

Conclusion

In artificial soils, the viscosity of hydrogel structures between mineral particles and the additional formation of an external network by polymer-clay interactions such as polyvalent cation bridging seem to promote microstructural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abedi-Koupai J, Sohrab F, Swarbrick G (2008) Evaluation of hydrogel application on soil water retention characteristics. J Plant Nutr 31:317–331

    Article  CAS  Google Scholar 

  • Akimkhan A (2013) Adsorption of polyacrylic acid and polyacrylamide on montmorillonite. Russ J Phys Chem A 87:1875–1880

    Article  CAS  Google Scholar 

  • Albalasmeh AA, Ghezzehei TA (2014) Interplay between soil drying and root exudation in rhizosheath development. Plant Soil 374:739–751

    Article  CAS  Google Scholar 

  • Al-Darby AM (1996) The hydraulic properties of a sandy soil treated with gel-forming soil conditioner. Soil Technol 9:15–28

    Article  Google Scholar 

  • Ameta N, Wayal AS (2008) Effect of bentonite on permeability of dune sand. Electron J Geotech Eng 13:1–7

    Google Scholar 

  • Andry H, Yamamoto T, Irie T, Moritani S, Inoue M, Fujiyama H (2009) Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. J Hydrol 373:177–183

    Article  CAS  Google Scholar 

  • Annabi M, Le Bissonnais Y, Le Villio-Poitrenaud M, Houot S (2011) Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric Ecosyst Environ 144:382–389

    Article  Google Scholar 

  • Arnarson TS, Keil RG (2000) Mechanisms of pore water organic matter adsorption to montmorillonite. Mar Chem 71:309–320

    Article  CAS  Google Scholar 

  • As HV, Lens P (2001) Use of 1h nmr to study transport processes in porous biosystems. J Ind Microbiol Biot 26:43–52

    Article  CAS  Google Scholar 

  • ASTM (2006) Standard test method for swell index of clay mineral component of geosynthetic clay liners, D5890–01, American Society for Testing & Materials (ASTM), Pennsylvania

  • Bahia L, Ramdane B (2012) Sand: an additive for stabilzation of swelling clay soils. Int J Geosci 3:719–725

    Article  Google Scholar 

  • Bai R, Basser PJ, Briber RM, Horkay F (2013) Nmr water self-diffusion and relaxation studies on sodium polyacrylate solutions and gels in physiologic ionic solutions. J Appl Polym Sci 131

  • Baiamonte G, De Pasquale C, Marsala V, Cimò G, Alonzo G, Crescimanno G, Conte P (2015) Structure alteration of a sandy-clay soil by biochar amendments. J Soils Sediments 15:816–824

    Article  CAS  Google Scholar 

  • Barré P, Hallett P (2009) Rheological stabilization of wet soils by model root and fungal exudates depends on clay mineralogy. Eur J Soil Sci 60:525–538

    Article  CAS  Google Scholar 

  • Baumgarten W, Horn R (2013) Assessing soil degradation by using a scale-spanning soil mechanical approach: a review. In: Krümmelbein J, Horn R, Pagliai M (eds) Advances in geoecology 42. Catena Verlag, Cremlingen, pp. 1–61

    Google Scholar 

  • Baumgarten W, Neugebauer T, Fuchs E, Horn R (2012) Structural stability of marshland soils of the riparian zone of the tidal elbe river. Soil Till Res 125:80–88

    Article  Google Scholar 

  • Baumgartner S, Lahajnar G, Sepe A, Kristl J (2002) Investigation of the state and dynamics of water in hydrogels of cellulose ethers by1h nmr spectroscopy. AAPS Pharm Sci Tech 3:86–93

    Article  Google Scholar 

  • Bayer JV, Jaeger F, Schaumann GE (2010) Proton nuclear magnetic resonance (nmr) relaxometry in soil science applications. Open Magn Reson J 3:15–26. doi:10.2174/1874769801003010015

    CAS  Google Scholar 

  • Beuling EE, Van Dusschoten D, Lens P, Van Den Heuvel JC, Van As H, Ottengraf SPP (1998) Characterization of the diffusive properties of biofilms using pulsed field gradient-nuclear magnetic resonance. Biotechnol Bioeng 60:283–291

    Article  CAS  PubMed  Google Scholar 

  • Bird NRA, Preston AR, Randall EW, Whalley WR, Whitmore AP (2005) Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance. Eur J Soil Sci 56:135–143. doi:10.1111/j.1351-0754.2004.00658.x

    Article  Google Scholar 

  • Blachier C, Michot L, Bihannic I, Barrès O, Jacquet A, Mosquet M (2009) Adsorption of polyamine on clay minerals. J Colloid Interface Sci 336:599–606

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Canqui H, Lal R (2008) Principles of soil conservation and management. Springer Science & Business Media, Berlin

    Google Scholar 

  • Blume H-P, Brümmer GW, Fleige H, Horn R, Kandeler E, Kögel-Knabner I, Kretzschmar R, Stahr K, Wilke B-M (2015) Scheffer/schachtschabel - soil science. Springer, Heidelberg

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22. doi:10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Brownstein KR, Tarr CE (1979) Importance of classical diffusion in nmr studies of water in biological cells. Phys Rev A 19:2446–2453

    Article  Google Scholar 

  • Buchmann C, Bentz J, Schaumann GE (2015) Intrinsic and model polymer hydrogel-induced soil structural stability of a silty sand soil as affected by soil moisture dynamics. Soil Till Res 154:22–33. doi:10.1016/j.still.2015.06.014

    Article  Google Scholar 

  • Buehrer T (1955) Role of chemical properties of clays in soil science. Clays Clay Technol Bull 169:167–176

    Google Scholar 

  • Butler JP, Reeds JA, Dawson SV (1981) Estimating solutions of first kind integral equations with nonnegative constraints and optimal smoothing. SIAM J Numer Anal 18:381–397

    Article  Google Scholar 

  • Callaghan PT, Jolley KW, Lelievre J, Wong RBK (1983) Nuclear magnetic resonance studies of wheat starch pastes. J Colloid Interface Sci 92:332–337

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1992) Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci Soc Am J 56:777–783

    Article  Google Scholar 

  • Carenza M, Cojazzi G, Bracci B, Lendinara L, Vitali L, Zincani M, Yoshida M, Katakai R, Takacs E, Higa OZ, Martellini F (1999) The state of water in thermoresponsive poly(acryloyl-l-proline methyl ester) hydrogels observed by dsc and 1 h-nmr relaxometry. Radiat Phys Chem 55:209–218

    Article  CAS  Google Scholar 

  • Chenu C, Le Bissonnais Y, Arrouays D (2000) Organic matter influence on clay wettability and soil aggregate stability. Soil Sci Soc Am J 64:1479–1486

    Article  CAS  Google Scholar 

  • Cihlar Z, Vojtova L, Conte P, Nasir S, Kucerik J (2014) Hydration and water holding properties of cross-linked lignite humic acids. Geoderma 230-231:151–160

    Article  CAS  Google Scholar 

  • Dafalla MA (2013) Effects of clay and moisture content on direct shear tests for clay-sand mixtures. Adv Mater Sci Eeng 2013. doi:10.1155/2013/562726

  • Degrassi A, Toffanin R, Paoletti S, Hall LD (1998) A better understanding of the properties of alginate solutions and gels by quantitative magnetic resonance imaging (mri). Carbohydr Res 306:19–26

    Article  CAS  Google Scholar 

  • Denef K, Six J, Bossuyt H, Frey SD, Elliott ET, Merckx R, Paustian K (2001) Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol Biochem 33:1599–1611

    Article  CAS  Google Scholar 

  • Dexter AR (1988) Advances in characterization of soil structure. Soil Till Res 11:199–238

    Article  Google Scholar 

  • Dıaz-Zorita M, Perfect E, Grove J (2002) Disruptive methods for assessing soil structure. Soil Till Res 64:3–22

    Article  Google Scholar 

  • Dunn K-J, Bergman DJ, Latorraca GA (2002) Handbook of geographical exploration-seismic exploration: nuclear magnetic resonance-petrophysical and logging applications. Pergamon Press, Oxford

    Google Scholar 

  • Fleury M, Gautier S, Norrant F, Kohler E (2011) Characterization of nanoporous systems with low field nmr: application to kaolinite and smectite clays. Paper was prepared for presentation at the international symposium of the Society of Core Analysts held in Austin; Available at http://www.jgmaas.com/SCA/2011/SCA201-23pdf: Accessed 02 November 2016

  • Fuentes I, Seguel O, Casanova M (2013) Shear strength of aggregates compared with bulk soil of two haploxerolls from Chile. J Soil Sci Plant Nutr 13:819–831

    Google Scholar 

  • Fyfe CA, Blazek AI (1997) Investigation of hydrogel formation from hydroxypropylmethylcellulose (hpmc) by nmr spectroscopy and nmr imaging techniques. Macromolecules 30:6230–6237

    Article  CAS  Google Scholar 

  • Ghezzehei TA, Or D (2001) Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sci Soc Am J 65:624–637

    Article  CAS  Google Scholar 

  • Graber ER, Fine P, Levy GJ (2006) Soil stabilization in semiarid and arid land agriculture. J Mater Civ Eng 18:190–205. doi:10.1061/(asce)0899-1561(2006)15:2(190)

    Article  CAS  Google Scholar 

  • Gu B, Doner HE (1992) The interaction of polysaccharides with silver hill illite. Clay Clay Miner 40:151–156

    Article  CAS  Google Scholar 

  • Gueddouda M, Lamara M, Aboubaker N, Taibi S (2008) Hydraulic conductivity and shear strength of dune sand-bentonite mixtures. Electron J Geotech Eng 13:1–15

    Google Scholar 

  • Guichet X, Fleury M, Kohler E (2008) Effect of clay aggregation on water diffusivity using low field nmr. J Colloid Interface Sci 327:84–93

    Article  CAS  PubMed  Google Scholar 

  • Guilherme MR, Aouada FA, Fajardo AR, Martins AF, Paulino AT, Davi MF, Rubira AF, Muniz EC (2015) Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: a review. European Polymer Journal

    Google Scholar 

  • Haber-Pohlmeier S, Stapf S, Dv D, Pohlmeier A (2010) Relaxation in a natural soil: Comparison of relaxometric imaging, t1 - t2 correlation and fast-field cycling nmr. Open Magn Reson J 3:57–62. doi:10.2174/1874769801003020057

    CAS  Google Scholar 

  • Harishkumar K, Muthukkumaran K (2011) Study on swelling soil behaviour and its improvements. International Journal of Earth Sciences and Engineering 4:19–25

    CAS  Google Scholar 

  • Hartge KH, Horn R (2014) Einführung in die bodenphysik. Schweizerbart, Stuttgart

    Google Scholar 

  • Haynes R, Beare M (1996) Aggregation and organic matter storage in meso-thermal, humid soils. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton, pp. 213–262

    Google Scholar 

  • Heller H, Keren R (2002) Anionic polyacrylamide polymers effect on rheological behavior of sodium-montmorillonite suspensions. Soil Sci Soc Am J 66:19–25

    Article  CAS  Google Scholar 

  • Hillel D (2003) Introduction to environmental soil physics. Academic press, California

    Google Scholar 

  • Hills B, Godward J, Debatty M, Barras L, Saturio C, Ouwerx C (2000) Nmr studies of calcium induced alginate gelation. Part ii. The internal bead structure. Magn Reson Chem 38:719–728

    Article  CAS  Google Scholar 

  • Holthusen D, Peth S, Horn R (2010) Impact of potassium concentration and matric potential on soil stability derived from rheological parameters. Soil Till Res 111:75–85. doi:10.1016/j.sti11.2010.08.002

    Article  Google Scholar 

  • Hussien RA, Donia AM, Atia AA, El-Sedfy OF, El-Hamid ARA, Rashad RT (2012) Studying some hydro-physical properties of two soils amended with kaolinite-modified cross-linked poly-acrylamides. Catena 92:172–178. doi:10.1016/j.catena.2011.12.010

    Article  CAS  Google Scholar 

  • Jaeger F, Rudolph N, Lang F, Schaumann GE (2008) Effects of soil solution’s constituents on proton nmr relaxometry of soil samples. Soil Sci Soc Am J 72:1694–1707. doi:10.2136/sssaj2007.0427

    Article  CAS  Google Scholar 

  • Jaeger F, Bowe S, Schaumann GE (2009) Evaluation of 1 h nmr relaxometry for the assessment of pore size distribution in soil samples. Eur J Soil Sci 60:1052–1064. doi:10.1111/j.1365-2389.2009.01192.x

    Article  Google Scholar 

  • Jaeger F, Shchegolikhina A, van As H, Schaumann GE (2010) Proton nmr relaxometry as a useful tool to evaluate swelling processes in peat soils. Open Magn Reson J 3:27–45. doi:10.2174/1874769801003010027

    Article  CAS  Google Scholar 

  • Kemper W, Rosenau R (1986) Aggregate stability and size distribution. In: Klute A (ed) Methods of soil analyses part 1: physical and mineralogical methods. ASA-SSSA, Madison, pp. 425–442

    Google Scholar 

  • Kenyon WE (1992) Nuclear magnetic resonance as a petrophysical measurement tool. Nucl Geophys 6:153–171

    CAS  Google Scholar 

  • Kerr W, Wicker L (2000) Nmr proton relaxation measurements of water associated with high methoxy and low methoxy pectins. Carbohydr Polym 42:133–141

    Article  CAS  Google Scholar 

  • Kim SJ, Shin SR, Lee YM, Kim SI (2003) Swelling characterizations of chitosan and polyacrylonitrile semi-interpenetrating polymer network hydrogels. J Appl Polym Sci 87:2011–2015

    Article  CAS  Google Scholar 

  • Kleinberg RL (1996) Utility of nmr t2 distributions, connection with capillary pressure, clay effect, and determination of the surface relaxivity parameter rho 2. Magn Reson Imaging 14:761–767

    Article  CAS  PubMed  Google Scholar 

  • Kleinberg RL (1999) Nuclear magnetic resonance. In: P-z W (ed) Methods in the physics of porous media. Academic Press, California, pp. 337–385

    Chapter  Google Scholar 

  • Knauss R, Fleischer G, Gruender W, Kaerger J (1996) Werner A. Pulsed field gradient nmr and nuclear magnetic relaxation studies of water mobility in hydrated collagen ii 36:241–248

    CAS  Google Scholar 

  • Kögel-Knabner I, Ding G-C, Heister K, Pronk GJ, Schaumann GE, Schloter M, Schulz S, Schwarz J, Smalla K (2010) Formation of biogeochemical interfaces in soils as controlled by mineral and organic components. 19th World Congress of Soil Science (WCSS) Brisbane

  • Le Bissonnais Y (1996) Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. Eur J Soil Sci 47:425–437

    Article  Google Scholar 

  • Lehmann J, Kinyangi J, Solomon D (2007) Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85:45–57. doi:10.1007/s10533-007-9105-3

    Article  Google Scholar 

  • Liu J, Shi B, Jiang HT, Bae SY, Huang H (2009) Improvement of water-stability of clay aggregates admixed with aqueous polymer soil stabilizers. Catena 77:175–179. doi:10.1016/j.catena.2008.12.016

    Article  CAS  Google Scholar 

  • Lourenço S, Gallipoli D, Augarde C, Toll D, Fisher P, Congreve A (2012) Formation and evolution of water menisci in unsaturated granular media. Géotechnique 62:193–199

    Article  Google Scholar 

  • Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4:143–156

    Article  CAS  Google Scholar 

  • Maghchiche A, Haouam A, Immirzi B (2010) Use of polymers and biopolymers for water retaining and soil stabilization in arid and semiarid regions. J Taibah Univ Sci 4:9–16. doi:10.1016/S1658-3655(12)60022-3

    Article  Google Scholar 

  • Markgraf W, Horn R (2007) Scanning electron microscopy–energy dispersive scan analyses and rheological investigations of south-brazilian soils. Soil Sci Soc Am J 71:851–859

    Article  CAS  Google Scholar 

  • Markgraf W, Horn R (2009) Rheological investigations in soil micro mechanics: measuring stiffness degradation and structural stability on a particle scale. In: Gragg LP, Cassell M (eds) Progress in management engineering. Nova Science Publishers, Hauppauge, New York, pp. 462–502

    Google Scholar 

  • Markgraf W, Horn R, Peth S (2006) An approach to rheometry in soil mechanics—structural changes in bentonite, clayey and silty soils. Soil Till Res 91:1–14

    Article  Google Scholar 

  • Markgraf W, Watts CW, Whalley WR, Hrkac T, Horn R (2012) Influence of organic matter on rheological properties of soil. Appl Clay Sci 64:25–33

    Article  CAS  Google Scholar 

  • Matsukawa S, Ando I (1996) A study of self-diffusion of molecules in polymer gel by pulsed-gradient spin-echo 1 h nmr. Macromolecules 29:7136–7140

    Article  CAS  Google Scholar 

  • McDonald PJ, Korb JP, Mitchell J, Monteilhet L (2005) Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional nmr relaxation study. Phys Rev E 72:011409. doi:10.1103/PhysRevE.72.011409

  • Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  • Miller WP, Willis RL, Levy GJ (1998) Aggregate stabilization in kaolinitic soils by low rates of anionic polyacrylamide. Soil Use Manage 14:101–105

    Article  Google Scholar 

  • Morris GA, Emsley JW (2012) Multidimensional nmr methods for the solution state. John Wiley & Sons, West Sussex

    Google Scholar 

  • Muta H, Kawauchi S, Satoh M (2003) Ion-specific swelling behavior of uncharged poly (acrylic acid) gel. Colloid Polym Sci 282:149–155

    Article  CAS  Google Scholar 

  • Nakashima Y (2000) Effects of clay fraction and temperature on the h2o self-diffusivity in hectorite gel: a pulsed-field-gradient spin-echo nuclear magnetic resonance study. Clay Clay Miner 48:603–609

    Article  CAS  Google Scholar 

  • Narjary B, Aggarwal P (2014) Evaluation of soil physical quality under amendments and hydrogel applications in a soybean–wheat cropping system. Commun Soil Sci Plant Anal 45:1167–1180

    Article  CAS  Google Scholar 

  • Ng L-T, Swami S (2008) Nmr and texture analyses in relation to swelling kinetics of 2-hydroxyethyl methacrylate/n-vinylpyrrolidinone hydrogels. Macromol Symp 264:1–7

    Article  CAS  Google Scholar 

  • Oades JM (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant Soil 76:319–337. doi:10.1007/BF02205590

    Article  CAS  Google Scholar 

  • Paluszek J (2011a) Physical quality of eroded soil amended with gel-forming polymer. Int Agrophys 25:375–382

    CAS  Google Scholar 

  • Paluszek J (2011b) Quality of structure and water-air properties of eroded haplic luvisol treated with gel-forming polymer. Pol J Environ Stud 19:1287–1296

    Google Scholar 

  • Penke B, Kinsey S, Gibbs SJ, Moerland TS, Locke BR (1998) Proton diffusion and t1 relaxation in polyacrylamide gels: a unified approach using volume averaging. J Magn Reson 132:240–254

    Article  CAS  PubMed  Google Scholar 

  • Rawls W, Pachepsky YA, Ritchie J, Sobecki T, Bloodworth H (2003) Effect of soil organic carbon on soil water retention. Geoderma 116:61–76

    Article  CAS  Google Scholar 

  • Reeves GM, Sims I, Cripps J (2006) Clay materials used in construction. The Geological Society, London

    Google Scholar 

  • Santamarina JC (2003) Soil behavior at the microscale: particle forces. Geotech Spec Publ:25–56

  • Schamp N, Huylebroeck J (1973) Adsorption of polymers on clays. J Polym Sci Polym Symp 42:553–562

    Article  Google Scholar 

  • Schaumann GE, Bertmer M (2014) Soil-water interactions. In: Simpson MJ, Simpson AJ (eds) Nmr spectroscopy: a versatile tool for environmental research. John Wiley & Sons, Ltd., Chichester, pp. 291–303

    Google Scholar 

  • Schaumann GE, Hobley E, Hurraß J, Rotard W (2005) H-nmr relaxometry to monitor wetting and swelling kinetics in high organic matter soils. Plant Soil 275:1–20. doi:10.1007/s11104-005-1708-7

    Article  CAS  Google Scholar 

  • Shapiro YE (2011) Structure and dynamics of hydrogels and organogels: an nmr spectroscopy approach. Prog Polym Sci 36:1184–1253

    Article  CAS  Google Scholar 

  • Singer M, Southard R, Warrington D, Janitzky P (1992) Stability of synthetic sand-clay aggregates after wetting and drying cycles. Soil Sci Soc Am J 56:1843–1848

    Article  Google Scholar 

  • Smagin A, Sadovnikova N, Nikolaeva E (2014) Thermodynamic analysis of the effect of strongly swelling polymer hydrogels on the physical state of soil and sediment samples. Eurasian Soil Sci 47:78–88

    Article  CAS  Google Scholar 

  • Song YQ, Venkataramanan L, Hurlimann MD, Flaum M, Frulla P, Straley C (2002) T-1-t-2 correlation spectra obtained using a fast two-dimensional Laplace inversion. J Magn Reson 154:261–268. doi:10.1006/jmre.2001.2474

    Article  CAS  PubMed  Google Scholar 

  • Stallmach F, Karger J (1999) The potentials of pulsed field gradient nmr for investigation of porous media. Adsorption 5:117–133

    Article  CAS  Google Scholar 

  • Stejskal E, Tanner J (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  CAS  Google Scholar 

  • Sun D, Cui H, Sun W (2009) Swelling of compacted sand–bentonite mixtures. Appl Clay Sci 43:485–492

    Article  CAS  Google Scholar 

  • Takahashi M, Mizoguchi K, Kitamura K, Masuda K (2007) Effects of clay content on the frictional strength and fluid transport property of faults. J Geophys Res Solid Earth 112:B08206. doi:10.1029/2006JB004678

  • Tembe S, Lockner DA, Wong TF (2010) Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite. J Geophys Res Solid Earth 115:B03416. doi:10.1029/2009JB006383

  • Todoruk TR, Langford CH, Kantzas A (2003) Pore-scale redistribution of water during wetting of air-dried soils as studied by low-field nmr relaxometry. Environ Sci Technol 37:2707–2713

    Article  CAS  PubMed  Google Scholar 

  • Veevaete M (2008) Applications of earth’s field nmr to porous systems and polymer gels. University of Bremen, Bremen, Physics/electrical engineering and information technology

    Google Scholar 

  • Venkataramanan L, Song Y-Q, Hürlimann MD (2002) Solving fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions. Signal Processing, IEEE Transactions on 50:1017–1026

    Article  Google Scholar 

  • Vogt C, Galvosas P, Klitzsch N, Stallmach F (2002) Self-diffusion studies of pore fluids in unconsolidated sediments by pfg nmr. J Appl Geophy 50:455–467

    Article  Google Scholar 

  • Zhao Y, Su H, Fang L, Tan T (2005) Superabsorbent hydrogels from poly(aspartic acid) with salt-, temperature- and ph-responsiveness properties. Polymer 46:5368–5376. doi:10.1016/j.polymer.2005.04.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was funded by the German Research Foundation, DFG (SCHA 849/5). We thank Eike Sünger for his help in the laboratory and with the sample preparation and all members of the research group for fruitful discussions. We further thanks Marcio-Fernando Cobo and Harald Todt from Bruker BioSpin for helping with the two-dimensional 1H-NMR measurements and for providing the respective pulse sequences for test purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Schaumann.

Additional information

Responsible Editor: John A. Kirkegaard.

Electronic supplementary material

ESM 1

(PDF 689 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchmann, C., Schaumann, G.E. Effect of water entrapment by a hydrogel on the microstructural stability of artificial soils with various clay content. Plant Soil 414, 181–198 (2017). https://doi.org/10.1007/s11104-016-3110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-3110-z

Keywords

Navigation