Skip to main content
Log in

Phytochemicals induced in chickpea roots selectively and non-selectively stimulate and suppress fungal endophytes and pathogens

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Plant roots shape the structure of the soil microbiome by producing a wide array of phytochemicals, which in turn impact plant growth and health. The synthesis of root metabolites is a dynamic process that is modulated by interactions with soil microorganisms. This study explored the regulation of soil-borne fungal endophytes and pathogens by the production of phytochemicals in chickpea (Cicer arietinum L.) roots colonized or not colonized by the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis.

Methods

Proteins and low-molecular-mass phytochemicals were extracted from chickpea roots and fractionated by flash chromatography and high pressure liquid chromatography (HPLC). The effects of these metabolites on the soil-borne fungal endophytes Trichoderma harzianum and Geomyces vinaceus and on the pathogens Fusarium oxysporum and Rhizoctonia solani were tested in 96-well plate assays.

Results

One protein fraction from the AM roots, which contained an apparent 34 KDa chitinase/chitin-binding domain and 24 KDa non-specific lipid transfer protein, non-selectively repressed the fungal endophytes and pathogens. By contrast to the protein fraction, the low-molecular-mass fractions were often selective. Eighteen fractions stimulated specific fungal species and seven fractions inhibited others.

Conclusions

Several protein and low-molecular-mass phytochemicals in chickpea roots influence fungal endophytes. The difference in the response of fungal species to the phytochemicals suggests that these metabolites could be involved in the so called host ‘preference’ of fungal endophytes or ‘resistance’ to pathogens. This research reveals that the majority of the bioactive root metabolites could be involved in the selective association of chickpea and fungal endophytes while a few compounds provided resistance by suppressing the pathogenic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badri DV, Loyola-Vargas VM, Broeckling CD, Vivanco JM (2010) Root secretion of phytochemicals in Arabidopsis is predominantly not influenced by diurnal rhythms. Mol Plant 3:491–498

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Weir TL, Van Der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotech 20:642–650

  • Bailey BA, Strem MD, Wood D (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol Res 113:1365–1376

    Article  PubMed  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  CAS  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509–524

    Article  CAS  PubMed  Google Scholar 

  • Bazghaleh N, Hamel C, Gan Y, Tar’an B, Knight JD (2015) Genotype-Specific Variation in the Structure of Root Fungal Communities Is Related to Chickpea Plant Productivity. Appl Environ Microbiol 81:2368–2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bending GD, Turner MK, Jones JE (2002) Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol Biochem 34:1073–1082

    Article  CAS  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLoS Biol 4:e226

    Article  PubMed  PubMed Central  Google Scholar 

  • Bienvenut WV, Déon C, Pasquarello C, Campbell JM, Sanchez JC, Vestal ML, Hochstrasser DF (2002) Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics 2:868–876

    Article  CAS  PubMed  Google Scholar 

  • Birkett MA, Bruce TJA, Martin JL, Smart LE, Oakley J, Wadhams LJ (2004) Responses of female orange wheat blossom midge, Sitodiplosis mosellana, To wheat panicle volatiles. J Chem Ecol 30:1319–1328

    Article  CAS  PubMed  Google Scholar 

  • Blilou I, Ocampo JA, García-Garrido JM (2000) Induction of LTP (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae. J Exp Bot 51:1969–1977

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Métraux JP (1988) Extracellular localization of chitinase in cucumber. Physiol Mol Plant Path 33:11–16

    Article  CAS  Google Scholar 

  • Bonanomi G, Vinale F, Scala F (2009) The Role of Natural Products in Plant-Microbe Interactions. In: AE Osbourn, V Lanzotti (eds) Plant-derived Natural Products. Springer US

  • Broekaert WF, Marien W, Terras FR, De Bolle MF, Proost P, Van Damme J, Dillen L, Claeys M, Rees SB (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31:4308–4314

    Article  CAS  PubMed  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos-Soriano L, García-Martínez J, Segundo BS (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Path 13:579–592

    Article  CAS  Google Scholar 

  • Chaeichi MR, Edalati-Fard L (2006) Evaluation of allelopathic effects of chickpea root extracts on germination and early growth of sorghum (Sorghum halepense), soybean (Glycine max L.) and sunflower (Helianthus annus). Sci J Agr 28:69–80

    Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root Exudation of Phytochemicals in Arabidopsis Follows Specific Patterns That Are Developmentally Programmed and Correlate with Soil Microbial Functions. PLoS One 8:e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67(10):2823–2837

  • Chel I, Baker R (1980) Induction of suppressiveness to Rhizoctonia solani in soil. Phytopathology 70:994–998

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Correia P, Ramos A, Carvalho L, Bago A, Loução M (2008) Arbuscular mycorrhiza in physiological and morphological adaptations of mediterranean plants. In: A Varma (ed) Mycorrhiza Springer Berlin Heidelberg

  • Cruz AF, Hamel C, Yang C, Matsubara T, Gan Y, Singh AK, Kuwada K, Ishii T (2012) Phytochemicals to suppress Fusarium head blight in wheat-chickpea rotation. Phytochemistry 78:72–80

    Article  CAS  PubMed  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P, Imani J, Sharma M, Weiss M, Waller F, Kogel K-H (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci 103:18450–18457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon R (2013) Microbiology: Break down the walls. Nature 493:36–37

    Article  PubMed  Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234:419–427

    Article  CAS  PubMed  Google Scholar 

  • Dumas-Gaudot E, Slezack S, Dassi B, Pozo MJ, Gianinazzi-Pearson V, Gianinazzi S (1996) Plant hydrolytic enzymes (chitinases and β-1,3-glucanases) in root reactions to pathogenic and symbiotic microorganisms. Plant Soil 185:211–221

    Article  CAS  Google Scholar 

  • Ellouze W, Hamel C, Cruz AF, Ishii T, Gan Y, Bouzid S, St-Arnaud M (2012) Phytochemicals and spore germination: At the root of AMF host preference? Appl Soil Ecol 60:98–104

    Article  Google Scholar 

  • Ellouze W, Esmaeili Taheri A, Bainard LD, Yang C, Bazghaleh N, Navarro-Borrell A, Hanson K, Hamel C (2014) Soil Fungal Resources in Annual Cropping Systems and Their Potential for Management. Biomed Res Int 53:18–24

  • Elmorjani K, Lurquin V, Lelion A, Rogniaux H, Marion D (2004) A bacterial expression system revisited for the recombinant production of cystine-rich plant lipid transfer proteins. Biochem Biophys Res Com 316:1202–1209

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Gan Y, Liang C, Chai Q, Lemke RL, Campbell CA, Zentner RP (2014) Improving farming practices reduces the carbon footprint of spring wheat production. Nat Commun 5

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G, Fliss I (2009) PhytAMP: A database dedicated to antimicrobial plant peptides. Nucl Acids Res 37:D963–D968

    Article  CAS  PubMed  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: What have we learned after 60 years? Ann Rev Phytol 37:285–306

    Article  CAS  Google Scholar 

  • Hartmann A, Schmid M, van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    Article  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Technical communication no. 22, revised 2nd ed. Commonwealth Agricultural Bureaux, Farnham Royal, England

  • Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: Infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62

    Article  CAS  PubMed  Google Scholar 

  • Horii S, Matsumura A, Kuramoto M, Ishii T (2009) Tryptophan dimer produced by water-stressed bahia grass is an attractant for Gigaspora margarita and Glomus caledonium. World J Microbiol Biotechnol 25:1207–1215

    Article  CAS  Google Scholar 

  • Iseli B, Boller T, Neuhaus JM (1993) The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiol 103:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishii T, Narutaki A, Sawada K, Aikawa J, Matsumoto I, Kadoya K (1997) Growth stimulatory substances for vesicular-arbuscular mycorrhizal fungi in Bahia grass (Paspalum notatum Flugge.) roots. Plant Soil 196:301–304

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Kape R, Wex K, Parniske M, Görge E, Wetzel A, Werner D (1993) Legume root metabolites and VA-mycorrhiza development. J Plant Physiol 141:54–60

    Article  CAS  Google Scholar 

  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483: 341–344.

  • Lawton K, Ward E, Payne G, Moyer M, Ryals J (1992) Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Plant Mol Biol 19:735–743

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Sun ZX, Zhu J, Xu T, Harman GE, Lorito M (2004) Enhancing rice resistance to fungal pathogens by transformation with cell wall degrading enzyme genes from Trichoderma atroviride. J Zhejiang Uni Scie 5:133–136

    Article  CAS  Google Scholar 

  • Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17:2337–2342

    Article  CAS  PubMed  Google Scholar 

  • Maciá-Vicente JG, Rosso LC, Ciancio A, Jansson HB, Lopez-Llorca LV (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. Ann Appl Biol 155:391–401

    Article  Google Scholar 

  • Mandyam KG, Roe J, Jumpponen A (2013) Arabidopsis thaliana model system reveals a continuum of responses to root endophyte colonization. Fungal Biol 117:250–260

    Article  PubMed  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Biotechnol 21(4):178–183

  • Miller P, Gan Y, McConkey B, McDonald C (2003) Pulse crops for the northern Great Plains. II: Cropping sequence effects on cereal, oilseed, and pulse crops. Agron J 95:980–986

    Article  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  CAS  PubMed  Google Scholar 

  • Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS (1991) Field diagnosis of chickpea diseases and their control. International Crops Research Institute for the Semi-Arid Tropics

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul Schreiner R, Koide RT (1993) Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species. New Phytol 123:99–105

    Article  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1998) Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi or Phytophthora parasitica. J Exp Bot 49:1729–1739

    Article  CAS  Google Scholar 

  • Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig adapt strategies glob chang 9:261–272

    Article  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Can J Microbiol 51:217–222

    Article  CAS  PubMed  Google Scholar 

  • Salzer P, Hübner B, Sirrenberg A, Hager A (1997) Differential effect of purified spruce chitinases and β-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi. Plant Physiol 114:957–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant-Microbe Inter 13:763–777

    Article  CAS  Google Scholar 

  • Salzer P, Feddermann N, Wiemken A, Boller T, Staehelin C (2004) Sinorhizobium meliloti-induced chitinase gene expression in Medicago truncatula ecotype R108–1: A comparison between symbiosis-specific class V and defence-related class IV chitinases. Planta 219:626–638

    Article  CAS  PubMed  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69:112–146

    Article  CAS  PubMed  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal Proteins. Appl Environ Microbiol 67:2883–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad T, Chenu C, Genet P, Barot S, Perveen N, Mougin C, Fontaine S (2015) Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol Biochem 80:146–155

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

  • Smith CJ (1996) Tansley review no. 86. Accumulation of phytoalexins: Defence mechanism and stimulus response system. New Phytol 132:1–45

    Article  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  PubMed  Google Scholar 

  • Stevens MT, Gusse AC, Lindroth RL (2014) Root chemistry in Populus tremuloides: effects of soil nutrients, defoliation, and genotype. J Chem Ecol 40:31–38

    Article  CAS  PubMed  Google Scholar 

  • Stevenson PC, Padgham DE, Haware MP (1995) Root exudates associated with the resistance of four chickpea cultivars (Cicer arietinum) to two races of Fusarium oxysporum f. sp. ciceri. Plant Pathol 44:686–694

    Article  Google Scholar 

  • Sun JY, Gaudet DA, ZX L, Frick M, Puchalski B, Laroche A (2008) Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol Plant-Microbe Inter 21:346–360

    Article  CAS  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T, Garcia-Garrido JM (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In: A Varma (ed) Mycorrhiza Springer, Berlin

  • Vujanovic V, Vidovic S, Fernandez MR, Daida P, Korber D (2009) Whole-cell protein and ITS rDNA profiles as diagnostic tools to discriminate Fusarium avenaceum intraspecific variability and associated virulence. Can J Microbiol 55(2):117–125

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2009) Retraction. Metabolic profiling of root exudates of Arabidopsis thaliana. J Agr Food Chem 57:9346

    Article  CAS  Google Scholar 

  • Walley FL, Clayton GW, Miller PR, Carr PM, Lafond GP (2007) Nitrogen Economy of Pulse Crop Production in the Northern Great Plains. Agron J 99:1710–1718

    Article  CAS  Google Scholar 

  • Wink M, Botschen F, Gosmann C, Schäfer H, Waterman PG (2010) Chemotaxonomy seen from a phylogenetic perspective and evolution of secondary metabolism. Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism. Wiley-Blackwell

  • Zhang JX, Xue AG, Cober ER, Morrison MJ, Zhang HJ, Zhang SZ, Gregorich E (2013) Prevalence, pathogenicity and cultivar resistance of Fusarium and Rhizoctonia species causing soybean root rot. Can J Plant Sci 93:221–236

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thankfully acknowledge the assistance of Keith Hanson, Errol Stewart, Elijah Atuku, Tomoko Matsubara and Dr. Motohito Yoneda. This research was supported by a grant from Saskatchewan Pulse Growers and Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Bazghaleh.

Additional information

Responsible Editor: Choong-Min Ryu.

Electronic Supplementary Material

Table S1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazghaleh, N., Hamel, C., Gan, Y. et al. Phytochemicals induced in chickpea roots selectively and non-selectively stimulate and suppress fungal endophytes and pathogens. Plant Soil 409, 479–493 (2016). https://doi.org/10.1007/s11104-016-2977-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2977-z

Keywords

Navigation