Skip to main content
Log in

Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The objectives of this study were to evaluate (1) the fertilizer potential of bone char, (2) the effects of wood biochar on plant-available phosphorus (P), and (3) the role of root-mycorrhizae-biochar interactions in plant P acquisition from a P-fixing soil.

Methods

Incubation and pot experiments were conducted with a P-fixing soil and maize with or without root hairs and arbuscular mycorrhizae (AM) inoculation. Olsen-, resin-P and plant P accumulation were used to estimate P availability from bone char, co-pyrolyzed bone char-wood biochar, and separate bone char and wood biochar additions produced at 60, 350 and 750 °C, and Triple Superphosphate (TSP).

Results

Maize inoculated with AM showed similar P accumulation when fertilized with either 750 °C bone char or TSP. Pyrolyzing bone did not increase extractable P in soil in comparison to unpyrolyzed bone, apart from a 67 % increase in resin-extractable P after additions of bone char pyrolyzed at 350 °C. Despite greater Olsen-P extractability, co-pyrolysis of bone with wood reduced maize P uptake. Wood biochars reduced resin-P from bone char by 14–26 %, whereas oven-dried wood increased resin-P by 23 %.

Conclusions

Bone char is an effective P fertilizer, especially if root-AM interactions are simultaneously considered. Biochar influences plant access to soil P and requires careful management to improve P availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abelson PH (1999) A potential phosphate crisis. Science 283:2015

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscual mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Antelo JF, Arce F, Avena M, Fiol S, Lopez R, Macias F (2007) Adsorption of a soil humic acid at the surface of goethite and its competitive interaction with phosphate. Geoderma 138:12–19

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Bates TR, Lynch JP (2001) Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250

    Article  CAS  Google Scholar 

  • Benton Jones J (2001) Laboratory guide for conducting soil tests and plant analysis. CRC Press LLC, Boca Raton

    Book  Google Scholar 

  • Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal infection and the morphology and function of root systems. Environ Exp Bot 33:159–173

    Article  Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low-molecular weight organic-acids on the solubilization of phosphates. Biol Fertil Soils 18:311–319

    Article  CAS  Google Scholar 

  • Brown WE, Patel PR, Chow LC (1975) Formation of CaHPO4 from enamel mineral and its relationship to caries mechniasm. J Dent Res 54:475–481

    Article  CAS  PubMed  Google Scholar 

  • Buss W, Graham MC, Shepherd JG, Mašek O (2016) Suitability of marginal biomass-derived biochars for soil amendment. Sci Total Environ 547:314–322

    Article  CAS  PubMed  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Article  Google Scholar 

  • Cordell D, Rosamarin A, Schroder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84:747–758

    Article  CAS  PubMed  Google Scholar 

  • Cornelissen G, Gustafsson O, Bucheli TD, Jonker MTO, Koelmans AA, Van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environ Sci Technol 39:6881–6895

    Article  CAS  PubMed  Google Scholar 

  • Cui MY, Caldwell MM (1996) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches II. Hyphae exploiting root-free soil. New Phytol 133:461–467

    Article  CAS  Google Scholar 

  • Cui HJ, Wang MK, Fu ML, Ci E (2011) Enhancing phosphorus availability in phosphorus-fertilized zones by reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. J Soils Sediments 11:1135–1141

    Article  CAS  Google Scholar 

  • DeLuca TH, MacKanzie MD, Gundale MJ (2009) Bio-char effects on soil nutrient transformation. In: Lehmann J, Joseph S (eds) Biochar for environmental management: science and technology. Earthscan Publications Ltd, London, pp. 251–270

    Google Scholar 

  • Deydier E, Guilet R, Sarda S, Sharrock P (2005) Physical and chemical characterisation of crude meat and bone meal combustion residue: “waste or raw material?”. J Hazard Mater 121:141–148

    Article  CAS  PubMed  Google Scholar 

  • Earl KD, Syers JK, McLaughlin JR (1979) Origin of the effects of citrate, tartrate and acetate on phosphate soprtion by soils and synthetic gels. Soil Sci Soc Am J 43:674–678

    Article  CAS  Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 461:33–143

    Article  Google Scholar 

  • Guppy CN, Menzies NW, Moody PW, Blamey FPC (2005) Competitive sorption reactions between phosphorus and organic matter in soil: a review. Aust J Soil Res 43:189–202

    Article  CAS  Google Scholar 

  • Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosyst 59:47–63

    Article  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hochholdinger F, Wen TJ, Zimmerman R, Chimot-Marolle P, da Costa e Silva O, Bruce W, Lamkey KR, Wienand U, Scnable PS (2008) The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield. Plant J 54:888–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    Article  CAS  Google Scholar 

  • Hollister CC, Bisogni JJ, Lehmann J (2013) Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (Zea mays L.) and oak wood (Quercus spp.). J Environ Qual 42:137–144

    Article  CAS  PubMed  Google Scholar 

  • Hunt JF, Ohno T, He Z, Honeycutt CW, Dail DB (2007) Inhibition of phosphorus sorption to goethite, gibbsite, and kaolin by fresh and decomposed organic matter. Biol Fertil Soils 44:277–288

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere - a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kaldorf M, Ludwig-Muller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67

    Article  CAS  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA-mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  • Kucey RMN, Janzen HH, Leggett ME (1989) Microbially mediated increases in plant-available phosphorus. Adv Agron 42:199–228

    Article  CAS  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Sparks DL (ed) Methods of soil analysis - Part 3 chemical methods. Soil Science Society of America, Inc. & American Society of Agronomy, Madison, pp. 895–997

    Google Scholar 

  • LeCroy C, Masiello CA, Rudgers JA, Hockaday WC, Silberg JJ (2013) Nitrogen, biochar, and mycorrhizae: alteration of the symbiosis and oxidation of the char surface. Soil Biol Biochem 58:248–254

    Article  CAS  Google Scholar 

  • Lehmann JJ, da Silva P, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JP, Beebe SE (1995) Adaptation of beans (Phaseolus vulgaris L) to low phosphorus availability. Hortscience 30:1165–1171

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Matsumoto T, Okazaki M, Inoue M, Hamada Y, Taira M, Takahashi J (2002) Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid. Biomaterials 23:2241–2247

    Article  CAS  PubMed  Google Scholar 

  • Mosse B (1962) Establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J. Gen Microbiol 27:509–520

    Article  CAS  PubMed  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Parfitt RL, Atkinson RJ, Smart RSC (1975) Mechanism of phosphate fixation by iron oxides. Soil Sci Soc Am J 39:837–841

    Article  CAS  Google Scholar 

  • Qayyam MF, Ashraf I, Abid M, Steffens D (2015) Effect of biochar, lime, and compost application on phosphorus adsorption in a Ferralsol. J Plant Nutr Soil Sci 178:576–581

    Article  Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Rajan SSS, Watkinson JH, Sinclair AG (1996) Phosphate rocks for direct application to soils. Adv Agron 57:77–159

    Article  CAS  Google Scholar 

  • Ramaekers L, Remans R, Rao IM, Blair MW, Vanderleyden J (2010) Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crop Res 117:169–176

    Article  Google Scholar 

  • Richardson AE, Lynch JP, Ryan PR, Delhaize E, Smith FA, Smith SE, Harvey PR, Ryan MH, Veneklaas EJ, Lambers H, Oberson A, Culvenor RA, Simpson RJ (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Sanchez P (1976) Properties and management of acid soils in the tropics. John Wiley, New York

    Google Scholar 

  • Siebers NF, Leinweber P (2013) Bone char: a clean and renewable phosphorus fertilizer with cadmium immobilization capability. Soil Sci Soc Am J 42:405–411

    CAS  Google Scholar 

  • Siebers NF, Godlinski F, Leinweber P (2012) The phosphorus fertilizer value of bone char for potatoes, wheat and onions: first results. Landbauforsch Volk 62:59–64

    Google Scholar 

  • Siebers NF, Godlinski F, Leinweber P (2014) Bone char as phosphorus fertilizer involved in cadmium immobilization in lettuce, wheat, and potato cropping. J Plant Nutr Soil Sci 177:75–83

    Article  Google Scholar 

  • Singh BB, Jones JP (1976) Phosphorus sorption and desorption characteristics of soil as affected by organic residues. Soil Sci Soc Am J 40:389–394

    Article  CAS  Google Scholar 

  • Smil V (2000) Phosphorus in the environment: natural flows and human interferences. Annu Rev Energy 25:53–88

    Article  Google Scholar 

  • Smits MM, Bonneville S, Benning LG, Banwart SA, Leake JR (2012) Plant-driven weathering of apatite - the role of an ectomycorrhizal fungus. Geobiology 10:445–456

    Article  CAS  PubMed  Google Scholar 

  • Tiessen H, Moir J (1993) Characterization of available P by sequential fractionation. In: Carter M (ed) Soil sampling and methods of analysis. Lewis, Boca Raton, pp. 75–78

    Google Scholar 

  • Tuominen L, Kairesalo T, Hartikainen H (1994) Comparison of methods for inhibiting bacterial-activity in sediment. Appl Environ Microbiol 60:3454–3457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2009) Effect of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246

    Article  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Vanek S, Lehmann J (2015) Phosphorus availability to beans via interactions between mycorrhizas and biochar. Plant Soil 395:105–123

    Article  CAS  Google Scholar 

  • Vassilev N, Martos E, Mendes G, Martos V, Vassileva M (2013) Biochar of animal origin: a sustainable solution ot the global problem of high-grade rock phosphate scarcity? J Sci Food Agric 93:1799–1804

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H (2004) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166–1176

    Article  CAS  Google Scholar 

  • Warnock DD, Lehmann J, Kuyper TW, Rillig MC (2007) Mycorrhizal responses to biochar in soil - concepts and mechanisms. Plant Soil 300:9–20

    Article  CAS  Google Scholar 

  • Warren GP, Robinson JS, Someus E (2009) Dissolution of phosphorus from animal bone char in 12 soils. Nutr Cycl Agroecosyst 84:167–178

    Article  Google Scholar 

  • Wen TJ, Schnable (1994) Analyses of mutrants of 3 genes that influence root hair development in Zea mays (Gramineae) suggest that root hairs are dispensable. Am J Bot 81:833–842

    Article  Google Scholar 

  • Wopenka B, Pasteris J (2003) Biological apatites: a comparison of bone and tooth mineralization. J Vertebr Paleontol 23:112A–112A

    Google Scholar 

  • Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143

    Article  Google Scholar 

  • Zhu J, Zhang C, Lynch JP (2010) The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Funct Plant Biol 37:313–322

    Article  Google Scholar 

  • Zwetsloot MJ, Lehmann J, Solomon D (2015) Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J Sci Food Agric 95:281–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for support from the Towards Sustainability Foundation, CARE-Cornell Impact through Innovations Fund, McKnight Foundation, Bradfield Award, Fulbright and Huygens Talent Scholarship Program. We would also like to thank Cornell Center for Materials Research for help with X-ray Diffraction Analysis under NSF award number DMR-0520404, Berhanu Belay and Gebermedihin Ambaw for support in procuring the soil, and Dawit Solomon for help with data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Lehmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Andreas Meyer-aurich.

Electronic supplementary material

ESM 1

(DOCX 424 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zwetsloot, M.J., Lehmann, J., Bauerle, T. et al. Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. Plant Soil 408, 95–105 (2016). https://doi.org/10.1007/s11104-016-2905-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2905-2

Keywords

Navigation