Skip to main content

Advertisement

Log in

Changes of soil C stocks and stability after 70-year afforestation in the Northeast USA

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Forest restoration has been proposed as an effective strategy for the sequestration of atmosphere CO2. Understanding the mechanisms of soil organic carbon (SOC) dynamics in afforestation is important to quantifying and enhancing carbon (C) sequestration.

Methods

After 70 years afforestation with two conifer and three broadleaf tree species in monocultures in Northeast USA, we measured soil C pools as well as C fractions in these plantations and nearby pasture control.

Results

Soil C stored in forest floor was increased by afforestation, especially in conifer stands. Total C stock in mineral soils was not statistically different among species, but C fractions had been altered. Compared to pasture land, afforestation decreased coarse particle organic C (cPOC) fraction, while increased recalcitrant mineral associated SOC (mSOC) fraction. Afforestation decreased the macro-aggregate C fraction in the 0–5 cm soil, but increased the micro-aggregate C fraction in the 5–15 cm soil.

Conclusions

1) Afforestation using conifers could improve the whole soil-profile carbon stock compared to broadleaves when the forest floor is included; 2) Even though the overall mineral soil C stock was not changed, afforestation could improve soil C stabilization through increasing mSOC fraction and forming more micro-aggregate C fraction in deeper soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bashkin MA, Binkley D (1998) Changes in soil carbon following afforestation in Hawaii. Ecology 79:828–833. doi:10.1890/0012-9658(1998)079

    Article  Google Scholar 

  • Chen C, Dynes JJ, Wang J, Karunakaran C, Sparks DL (2014) Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions. Environmental Science & Technology 48:6678–6686. doi:10.1021/es405485a

    Article  CAS  Google Scholar 

  • Corre MD, Schnabel RR, Shaffer JA (1999) Evaluation of soil organic carbon under forests, cool-season and warm-season grasses in the northeastern US. Soil Biol Biochem 31:1531–1539. doi:10.1016/s0038-0717(99)00074-7

    Article  CAS  Google Scholar 

  • De Marco A, Spaccini R, Vittozzi P, Esposito F, Berg B, Virzo De Santo A (2012) Decomposition of black locust and black pine leaf litter in two coeval forest stands on mount Vesuvius and dynamics of organic components assessed through proximate analysis and NMR spectroscopy. Soil Biol Biochem 51:1–15. doi:10.1016/j.soilbio.2012.03.025

    Article  Google Scholar 

  • Del Galdo I, Six J, Peressotti A, Cotrufo MF (2003) Assessing the impact of land-use change on soil C sequestration in agricultural soils by means of organic matter fractionation and stable C isotopes. Glob Chang Biol 9:1204–1213. doi:10.1046/j.1365-2486.2003.00657.x

    Article  Google Scholar 

  • Deng Q, Cheng X, Yang Y, Zhang Q, Luo Y (2014) Carbon–nitrogen interactions during afforestation in central China. Soil Biol Biochem 69:119–122. doi:10.1016/j.soilbio.2013.10.053

    Article  CAS  Google Scholar 

  • Eclesia RP, Jobbagy EG, Jackson RB, Biganzoli F, Pineiro G (2012) Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Glob Chang Biol 18:3237–3251. doi:10.1111/j.1365-2486.2012.02761.x

    Article  Google Scholar 

  • Farley KA, Kelly EF, Hofstede RGM (2004) Soil organic carbon and water retention after conversion of grasslands to pine plantations in the Ecuadorian Andes. Ecosystems 7:729–739. doi:10.1007/s10021-004-0047-5

    Article  Google Scholar 

  • Garten CT (2011) Comparison of forest soil carbon dynamics at five sites along a latitudinal gradient. Geoderma 167-168:30–40. doi:10.1016/j.geoderma.2011.08.007

    Article  CAS  Google Scholar 

  • Gregorich EG, Beare MH (eds) (2008) Physically uncomplexed organic matter. CRC Press,Taylor &Francis,, Boca Raton, FL. pp. 1224

  • Hernandez-Ramirez G, Sauer TJ, Cambardella CA, Brandle JR, James DE (2011) Carbon sources and dynamics in afforested and cultivated corn belt soils. Soil Sci Soc Am J 75:216. doi:10.2136/sssaj2010.0114

    Article  CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436. doi:10.1890/1051-0761(2000)010[0423:tvdoso]2.0.co;2

    Article  Google Scholar 

  • Jug A, Makeschin F, Rehfuess KE, Hofmann-Schielle C (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manage 121:85--99. doi:10.1016/s0378-1127(98)00558-1

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82. doi:10.1002/jpln.200700048

    Article  Google Scholar 

  • Kramer MG, Sanderman J, Chadwick OA, Chorover J, Vitousek PM (2012) Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob Chang Biol 18:2594–2605. doi:10.1111/j.1365-2486.2012.02681.x

    Article  Google Scholar 

  • Laganiere J, Angers DA, Pare D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453. doi:10.1111/j.1365-2486.2009.01930.x

    Article  Google Scholar 

  • Lemma B, Kleja DB, Nilsson I, Olsson M (2006) Soil carbon sequestration under different exotic tree species in the southwestern highlands of Ethiopia. Geoderma 136:886–898. doi:10.1016/j.geoderma.2006.06.008

    Article  CAS  Google Scholar 

  • Li DJ, Niu SL, Luo YQ (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181. doi:10.1111/j.1469-8137.2012.04150.x

    Article  CAS  PubMed  Google Scholar 

  • Mao R, Zeng DH (2010) Changes in soil particulate organic matter, microbial biomass, and activity following afforestation of marginal agricultural lands in a semi-arid area of northeast China. Environ Manag 46:110–116. doi:10.1007/s00267-010-9504-4

    Article  Google Scholar 

  • Mao R, Zeng DH, Hu YL, Li LJ, Yang D (2010) Soil organic carbon and nitrogen stocks in an age-sequence of poplar stands planted on marginal agricultural land in northeast China. Plant Soil 332:277–287. doi:10.1007/s11104-010-0292-7

    Article  CAS  Google Scholar 

  • Martens DA, Reedy TE, Lewis DT (2004) Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Glob Chang Biol 10:65–78. doi:10.1046/j.1529-8817.2003.00722.x

    Article  Google Scholar 

  • Mendham DS, Heagney EC, Corbeels M, O’Connell AM, Grove TS, McMurtrie RE (2004) Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus. Soil Biol Biochem 36:1067–1074. doi:10.1016/j.soilbio.2004.02.018

    Article  CAS  Google Scholar 

  • Mobley ML, Lajtha K, Kramer MG, Bacon AR, Heine PR, Richter DD (2015) Surficial gains and subsoil losses of soil carbon and nitrogen during secondary forest development. Glob Chang Biol 21:986–996. doi:10.1111/gcb.12715

    Article  PubMed  Google Scholar 

  • Nave LE, Swanston CW, Mishra U, Nadelhoffer KJ (2013) Afforestation effects on soil carbon storage in the United States: a synthesis. Soil Sci Soc Am J 77:1035–1047. doi:10.2136/sssaj2012.0236

    Article  CAS  Google Scholar 

  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. doi:10.1126/science.1201609

    Article  CAS  PubMed  Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257. doi:10.1016/s0378-1127(01)00740-x

    Article  Google Scholar 

  • Phillips RP, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 87:1302–1313. doi:10.1890/0012-9658(2006)87

    Article  PubMed  Google Scholar 

  • Richter DD, Markewitz D, Wells CG, Allen HL, April R, Heine PR, Urrego B (1994) Soil chemical change during three decades in an old-field loblolly pine (Pinus taeda L.) ecosystem. Ecology 75:1463–1473. doi:10.2307/1937469

    Article  Google Scholar 

  • Richter DD, Markewitz D, Trumbore SE, Wells CG (1999) Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature 400:56–58. doi:10.1038/21867

    Article  CAS  Google Scholar 

  • Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia plateau, Oregon, USA. Agric Ecosyst Environ 122:325–339. doi:10.1016/j.agee.2007.01.026

    Article  CAS  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386

    Article  CAS  PubMed  Google Scholar 

  • Six J, Elliott ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377

    Article  CAS  Google Scholar 

  • Six J, Callewaert P, Lenders S, De Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002) Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Sci Soc Am J 66:1981–1987

    Article  CAS  Google Scholar 

  • Trumbore S, Da Costa ES, Nepstad DC, Barbosa De Camargo P, Martinelli LA, Ray D, Restom T, Silver W (2006) Dynamics of fine root carbon in Amazonian tropical ecosystems and the contribution of roots to soil respiration. Glob Chang Biol 12:217–229. doi:10.1111/j.1365-2486.2005.001063.x

    Article  Google Scholar 

  • Verchot LV, Dutaur L, Shepherd KD, Albrecht A (2011) Organic matter stabilization in soil aggregates: understanding the biogeochemical mechanisms that determine the fate of carbon inputs in soils. Geoderma 161:182–193. doi:10.1016/j.geoderma.2010.12.017

    Article  CAS  Google Scholar 

  • Vesterdal L, Ritter E, Gundersen P (2002) Change in soil organic carbon following afforestation of former arable land. For Ecol Manag 169:137–147. doi:10.1016/s0378-1127(02)00304-3

    Article  Google Scholar 

  • Vesterdal L, Schmidt IK, Callesen I, Nilsson LO, Gundersen P (2008) Carbon and nitrogen in forest floor and mineral soil under six common European tree species. For Ecol Manag 255:35–48. doi:10.1016/j.foreco.2007.08.015

    Article  Google Scholar 

  • Wang F, Li Z, Xia H, Zou B, Li N, Liu J, Zhu W (2010) Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Sci Plant Nutr 56:297–306. doi:10.1111/j.1747-0765.2010.00454.x

    Article  Google Scholar 

  • Zhao J, Li S, He X, Liu L, Wang K (2014) The soil biota composition along a progressive succession of secondary vegetation in a karst area. PLoS One 9:e112436. doi:10.1371/journal.pone.0112436

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Wallace Research Foundation. Wang was supported by the Chinese Scholarship Council (CSC) Fellowship to study in the USA. He was also funded by the Natural Science Foundation of China (31300419), Innovation Foundation of Guangdong Forestry (2012KJCX013-02, 2014KJCX021-03) and “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA05070307). We appreciate greatly two anonymous reviewers’ comments which have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixing Zhu.

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhu, W. & Chen, H. Changes of soil C stocks and stability after 70-year afforestation in the Northeast USA. Plant Soil 401, 319–329 (2016). https://doi.org/10.1007/s11104-015-2755-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2755-3

Keywords

Navigation