Skip to main content

Advertisement

Log in

Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Soybean is an important food crop as well as a promising energy source. Because soybean is self-sufficient in nitrogen, phosphorus, in the orthophosphate form (Pi), becomes the most limiting macronutrient affecting the growth and productivity of soybean, especially in acidic and alkaline soils. It has been documented that plants have developed a series of physiological and biochemical strategies to adapt to Pi deficiency, but the mechanistic details of soybean response to Pi deficiency, especially those at the molecular level, are largely unknown. In this study, we aim to understand how soybean plants respond to Pi deficiency in soils by identifying and analysing Pi-responsive genes in the roots of soybean at the whole-genome scale.

Methods

The transcriptome in soybean roots under Pi-deficiency was analyzed using the Illumina’s digital gene expression (DGE) high-throughput sequencing platforms, and the expression profiles of arbitrarily selected Pi-responsive genes identified in the current research were validated by quantitative RT-PCR.

Results

A total of 1612 genes were found to be differentially expressed in soybean roots after Pi deficiency for seven days; 727 genes were up-regulated, and 885 genes were down-regulated. Gene ontology (GO) enrichment analysis showed that 17 GO terms of biological processes were significantly enriched including photosynthesis, iron ion transport, dUTP metabolism, cell wall organization, fatty acid metabolism and stress responses. Genes possibly involved in regulating Pi homeostasis, nutrient uptake and transport, homeostasis control of reactive oxygen species, calcium signaling, hormonal signaling and gene transcription were included in the differentially expressed genes. Quantitative RT-PCR was used to analyze the expression of 30 arbitrarily selected genes and 29 of them were confirmed to exhibit similar differential expression patterns under Pi deficiency as revealed by the high throughput DGE sequencing.

Conclusions

These results provide useful information for identifying and characterizing important components in the Pi signaling network in soybean and enhance understanding of the molecular mechanisms by which plants adapt to low Pi stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Borch K, Bouma TJ, Lynch JP, Brown KM (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431

    Article  CAS  Google Scholar 

  • Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Perez-Perez J, Solano R, Leyva A, Paz-Ares J (2010) A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genet 6: e1001102

  • Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L (2008) Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant-and species-specific levels. J Exp Bot 59:2479–2497

    Article  CAS  PubMed  Google Scholar 

  • Chen ZH, Nimmo GA, Jenkins GI, Nimmo HG (2007) BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem J 405:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell 21:3554–3566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Cui QQ, Liang CY, Sun LL, Tian J, Liao H (2011) Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics 11:4648–4659

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Ma X, Li C, Zhang W, Xia G, Wang M (2014) A wheat aminocyclopropane-1-carboxylate oxidase gene, TaACO1, negatively regulates salinity stress in Arabidopsis thaliana. Plant Cell Rep 33:1815–1827

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Lin SI (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell 18:412–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Global Environ Change 19:292–305

    Article  Google Scholar 

  • Cruz-Ramírez A, Oropeza-Aburto A, Razo-Hernández F, Ramírez-Chávez E, Herrera-Estrella L (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci U S A 103:6765–6770

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai X, Wang Y, Yang A, Zhang WH (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159:169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaiah BN, Nagarajan VK, Raghothama KG (2007) Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiol 145:147–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz K-J, Foyer C (1986) The relationship between phosphate status and photosynthesis in leaves. Planta 167:376–381

    Article  CAS  PubMed  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Wang X, Hu R, Wang Y, Xiao C, Jiang Y, Zhang X, Zheng C, Fu Y-F (2013) The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. BMC plant biology 13:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488:535–539

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Zhang L, Zhao J, Liao H, Zhuang C, Yan X (2008) Identification of temporally and spatially phosphate-starvation responsive genes in Glycine max. Plant Sci 175:574–584

    Article  CAS  Google Scholar 

  • Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2012) Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST, Rahn C, Swarup R, Woolaway KE, White PJ (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132:578–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond JP, Broadley MR, Bowen HC, Spracklen WP, Hayden RM, White PJ (2011) Gene expression changes in phosphorus deficient potato (Solanum tuberosum L.) leaves and the potential for diagnostic gene expression markers. PloS one 6: e24606

  • Hernández G, Ramírez M, Valdés-López O, Tesfaye M, Graham MA, Czechowski T, Schlereth A, Wandrey M, Erban A, Cheung F (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Gao X, Liao L, Harberd NP, Fu X (2007) Phosphate starvation root architecture and anthocyanin accumulation responses are modulated by the gibberellin-DELLA signaling pathway in Arabidopsis. Plant Physiol 145:1460–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang J, Yu H, Tian C, Zhou W, Li C, Jiao Y, Liu D (2014) Suppression of photosynthetic gene expression in roots Is required for sustained root growth under phosphate deficiency. Plant Physiol 165:1156–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo HF, Chiou TJ (2011) The role of microRNAs in phosphorus deficiency signaling. Plant Physiol 156:1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan P, Li W, Schmidt W (2012) Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol Cell Proteomics 11:1156–1166

    Article  PubMed  PubMed Central  Google Scholar 

  • Lauter ANM, Peiffer GA, Yin T, Whitham SA, Cook D, Shoemaker RC, Graham MA (2014) Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC genomics 15:702

    Article  Google Scholar 

  • Li L, Liu C, Lian X (2010) Gene expression profiles in rice roots under low phosphorus stress. Plant Mol Biol 72:423–432

    Article  CAS  PubMed  Google Scholar 

  • Li C, Gui S, Yang T, Walk T, Wang X, Liao H (2012) Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Ann Bot 109:275–285

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Wang J, Zhao J, Tian J, Liao H (2014) Control of phosphate homeostasis through gene regulation in crops. Curr Opin Plant Biol 21:59–66

    Article  CAS  PubMed  Google Scholar 

  • Lin W-D, Liao Y-Y, Yang TJ, Pan C-Y, Buckhout TJ, Schmidt W (2011) Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiol 155:1383–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin HJ, Gao J, Zhang ZM, Shen YO, Lan H, Liu L, Xiang K, Zhao M, Zhou S, Zhang YZ, Gao SB, Pan GT (2013) Transcriptional responses of maize seedling root to phosphorus starvation. Mol Biol Rep 40:5359–5379

    Article  CAS  PubMed  Google Scholar 

  • Liu TY, Aung K, Tseng CY, Chang TY, Chen YS, Chiou TJ (2011) Vacuolar Ca2+/H+ transport activity is required for systemic phosphate homeostasis involving shoot-to-root signaling in Arabidopsis. Plant Physiol 156:1176–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu TY, Lin WY, Huang TK, Chiou TJ (2014) MicroRNA-mediated surveillance of phosphate transporters on the move. Trends Plant Sci 19:647–655

    Article  CAS  PubMed  Google Scholar 

  • López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L (2014) Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops. Annu Rev Plant Biol 65:95–123

    Article  PubMed  Google Scholar 

  • Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J, Wu Z, Liu Y, Mao C, Yi K, Wu P (2014) SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. Plant Cell 26:1586–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294

    Article  CAS  PubMed  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci U S A 102:11934–11939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Morcuende R, Bari R, Gibon Y, Zheng W, Pant BD, Blasting O, Usadel B, Czechowski T, Udvardi MK, Stitt M (2007) Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell & Environment 30:85–112

    Article  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Morant M, Jarmer H, Nilsson L, Nielsen TH (2007) Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism. Plant Physiol 143:156–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Oono Y, Kawahara Y, Kanamori H, Mizuno H, Yamagata H, Yamamoto M, Hosokawa S, Ikawa H, Akahane I, Zhu Z, Wu J, Itoh T, Matsumoto T (2011) mRNA-Seq reveals a comprehensive transcriptome profile of rice under phosphate stress. Rice 4:50–65

    Article  Google Scholar 

  • Oono Y, Kobayashi F, Kawahara Y, Yazawa T, Handa H, Itoh T, Matsumoto T (2013) Characterisation of the wheat (Triticum aestivum L.) transcriptome by de novo assembly for the discovery of phosphate starvation-responsive genes: gene expression in Pi-stressed wheat. BMC genomics 14:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Rourke JA, Yang SS, Miller SS, Bucciarelli B, Liu J, Rydeen A, Bozsoki Z, Uhde-Stone C, Tu ZJ, Allan D, Gronwald JW, Vance CP (2013) An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Article  PubMed  Google Scholar 

  • Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45

  • Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poovaiah BW, Du L, Wang H, Yang T (2013) Recent advances in calcium/calmodulin-mediated signaling with an emphasis on plant-microbe interactions. Plant Physiol 163:531–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla JM, de Lorenzo L, Irigoyen ML, Masiero S, Bustos R, Rodríguez J (2014) SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis. Proc Natl Acad Sci U S A 111:14947–14952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin L, Guo YX, Chen LY, Liang RK, Gu MA, Xu GH, Zhao J, Walk T, Liao H (2012) Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. Plos One 7: e47726

  • Quiles-Pando C, Rexach J, Navarro-Gochicoa MT, Camacho-Cristobal JJ, Herrera-Rodriguez MB, Gonzalez-Fontes A (2013) Boron deficiency increases the levels of cytosolic Ca2+ and expression of Ca2+-related genes in Arabidopsis thaliana roots. Plant Physiol Biochem 65:55–60

    Article  CAS  PubMed  Google Scholar 

  • Ramaiah M, Jain A, Baldwin JC, Karthikeyan AS, Raghothama KG (2011) Characterization of the phosphate starvation-induced glycerol-3-phosphate permease gene family in Arabidopsis. Plant Physiol 157:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaiah M, Jain A, Raghothama KG (2014) AtERF070 regulates root development and phosphate-starvation-mediated-responses. Plant Physiol 164:1484–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson A, Lynch J, Ryan P, Delhaize E, Smith FA, Smith S, Harvey P, Ryan M, Veneklaas E, Lambers H, Oberson A, Culvenor R, Simpson R (2011) Plant and microbial strategies to improve the phosphorus efficiency of agriculture. Plant Soil 349:121–156

    Article  CAS  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio V, Bustos R, Irigoyen ML, Cardona-Lopez X, Rojas-Triana M, Paz-Ares J (2009) Plant hormones and nutrient signaling. Plant Mol Biol 69:361–373

    Article  CAS  PubMed  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J (2012) The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol 193:842–851

    Article  CAS  PubMed  Google Scholar 

  • Secco D, Jabnoune M, Walker H, Shou H, Wu P, Poirier Y, Whelan J (2013) Spatio-temporal transcript profiling of rice roots and shoots in response to phosphate starvation and recovery. Plant Cell 25:4285–4304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha A, Chen Y, Ba H, Shan Z, Zhang X, Wu X, Qiu D, Chen S, Zhou X (2012) Identification of Glycine Max microRNAs in response to phosphorus deficiency. J Plant Biol 55:268–280

    Article  CAS  Google Scholar 

  • Shen C, Wang S, Zhang S, Xu Y, Qian Q, Qi Y, Jiang DA (2013) OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Plant Cell Environ 36:607–620

    Article  CAS  PubMed  Google Scholar 

  • Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Chen R, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    Article  CAS  PubMed  Google Scholar 

  • Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thibaud MC, Arrighi JF, Bayle V, Chiarenza S, Creff A, Bustos R, Paz-Ares J, Poirier Y, Nussaume L (2010) Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. Plant J 64:775–789

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci U S A 96:4698–4703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ticconi CA, Lucero RD, Sakhonwasee S, Adamson AW, Creff A, Nussaume L, Desnos T, Abel S (2009) ER-resident proteins PDR2 and LPR1 mediate the developmental response of root meristems to phosphate availability. Proc Natl Acad Sci U S A 106:14174–14179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhde-Stone C, Zinn KE, Ramirez-Yáñez M, Li A, Vance CP, Allan DL (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131:1064–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:S131–S151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang QQ, Liu F, Chen XS, Ma XJ, Zeng HQ, Yang ZM (2010a) Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96:369–376

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yan X, Liao H (2010b) Genetic improvement for phosphorus efficiency in soybean: a radical approach. Ann Bot 106:215–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang S, Sun C, Xu Y, Chen Y, Yu C, Qian Q, Jiang DA, Qi Y (2014) Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytol 201:91–103

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Zeng H, Hu X, Zhu Y, Chen Y, Shen C, Wang H, Poovaiah B, Du L (2015) Identification and expression analyses of calmodulin-binding transcription activator genes in soybean. Plant Soil: 386:205–221

    Article  CAS  Google Scholar 

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T (2003) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ 26:1515–1523

    Article  CAS  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann Bot 111:1021–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo J, MacPherson CR, Liu J, Wang H, Kiba T, Hannah MA, Wang XJ, Bajic VB, Chua NH (2012) The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC Plant Biolo 12:62

    Article  CAS  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F, Liu Q, Chen LY, Kuang JB, Walk T, Wang JX, Liao H (2013) Genome-wide identification of soybean microRNAs and their targets reveals their organ-specificity and responses to phosphate starvation. BMC genomics 14:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Tian J, Liao H (2014) Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean. Ann Bot 114:477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Xiao X, Ou Y, Wu X, Xu G (2015) Root transcriptome analysis on the grape genotypes with contrast translocation pattern of excess manganese from root to shoot. Plant Soil 387:49–67

    Article  CAS  Google Scholar 

  • Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng HQ, Zhu YY, Huang SQ, Yang ZM (2010) Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol 167:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Zeng HQ, Liu G, Kinoshita T, Zhang RP, Zhu YY, Shen QR, Xu GH (2012) Stimulation of phosphorus uptake by ammonium nutrition involves plasma membrane H+ ATPase in rice roots. Plant Soil 357:205–214

    Article  CAS  Google Scholar 

  • Zeng H, Feng X, Wang B, Zhu Y, Shen Q, Xu G (2013) Citrate exudation induced by aluminum is independent of plasma membrane H+-ATPase activity and coupled with potassium efflux from cluster roots of phosphorus-deficient white lupin. Plant Soil 366:389–400

    Article  CAS  Google Scholar 

  • Zeng H, Wang G, Hu X, Wang H, Du L, Zhu Y (2014) Role of microRNAs in plant responses to nutrient stress. Plant Soil 374:1005–1021

    Article  CAS  Google Scholar 

  • Zhang Z, Liao H, Lucas WJ (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56:192–220

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Huang F, Narsai R, Wu J, Giraud E, He F, Cheng L, Wang F, Wu P, Whelan J, Shou H (2009) Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiol 151:262–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Yang SN, Li H, Zhu CC, Liu ZP, Yang ZM (2013) Molecular dissection of mercury-responsive transcriptome and sense/antisense genes in Medicago truncatula by high-throughput sequencing. J Hazard Mater 252:123–131

    Article  PubMed  Google Scholar 

  • Zhu YY, Zeng HQ, Dong CX, Yin XM, Shen QR, Yang ZM (2010) microRNA expression profiles associated with phosphorus deficiency in white lupin (Lupinus albus L.). Plant Sci 178:23–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (31201679 and U1130304) and Zhejiang Provincial Natural Science Foundation of China (LY15C020006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houqing Zeng or Liqun Du.

Additional information

Responsible Editor: John Hammond.

Electronic supplementary material

ESM 1

(DOCX 29 kb)

ESM 2

(XLSX 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Wang, G., Zhang, Y. et al. Genome-wide identification of phosphate-deficiency-responsive genes in soybean roots by high-throughput sequencing. Plant Soil 398, 207–227 (2016). https://doi.org/10.1007/s11104-015-2657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2657-4

Keywords

Navigation