Skip to main content
Log in

Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The function of indigenous mycorrhizal fungi in improving crop growth is not well addressed because of methodological limitations. In this study, we determined the effects of the indigenous arbuscular mycorrhizal (AM) fungal community on the growth responses and salt tolerance of cotton and maize.

Methods

Through a 2-year field trial with in-growth microcosms constructed by polyvinylchloride (PVC) tube cores and 30-μm nylon mesh that were buried in different saline soils, two core treatments, static (freely allowed AM fungal colonization) and vibrating (patting the top core edge twice every day to break any extraradical hyphae that intends to access into the core to reduce AM fungal colonization), were applied in field conditions.

Results

The results showed that vibration did not affect the growth of the control non-mycorrhizal plant, sugar beet, but significantly affected the growth of the mycorrhizal plants, cotton and maize. These data indicated that such core systems could provide a reliable method to quantify the functions of the AM fungal community in situ. Mycorrhizal colonization of cotton and maize significantly declined in the vibrating treatment compared to the static treatment. Phosphorus (P) uptake and biomass production of cotton and maize were significantly higher in the static than the vibrating. The indigenous AM fungal community promoted leaf proline accumulation in cotton and a higher K+/Na+ ratio via selective preferential uptake of K+ over Na+. These effects and enhanced P uptake derived from AM fungi were related to alleviating salt stress and promoted the growth of cotton and maize in saline soils.

Conclusions

Our results demonstrated that indigenous AM fungi play a role in improving crop growth by alleviating the harmful effects of high salinity in intensified cropping systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abuduwaili J, Tang Y, Abulimiti M, Liu DW, Ma L (2012) Spatial distribution of soil moisture, salinity and organic matter in Manas River watershed, Xinjiang, China. J Arid Land 4:441–449

    Article  Google Scholar 

  • Al-Garni SMS (2006) Increasing NaCl-salt tolerance of a halophatic plant Phragmites australis by mycorrhizal symbiosis. Amer-Eurasian J Agri Environ Sci 1:119–126

    Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20

    Article  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Mihara KL, Schreiner RP, McDaniel H (1996) Mycorrhizae, biocides, and biocontrol. 1. Herbicide-mycorrhiza interactions in soybean and cocklebur treated with bentazon. Appl Soil Ecol 3:197–204

    Article  Google Scholar 

  • Bharadwaj DP, Alstrom S, Lundquist PO (2012) Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22:437–447

    Article  PubMed  Google Scholar 

  • Busse MD, Fiddler GO, Ratcliff AW (2004) Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content. Water Air Soil Pollut 152:23–34

    Article  CAS  Google Scholar 

  • Campagnac E, Khasa DP (2014) Relationship between genetic variability in Rhizophagus irregularis and tolerance to saline conditions. Mycorrhiza 24:121–129

    Article  CAS  PubMed  Google Scholar 

  • Chen SL, Hawighorst P, Sun J, Polle A (2014) Salt tolerance in Populus: significance of stress signaling networks, mycorrhization, and soil amendments for cellular and whole-plant nutrition. Environ Exp Bot 107:113–124

    Article  Google Scholar 

  • Chiocchio V, Venedikian N, Martinez AE, Menendez A, Ocampo JA, Godeas A (2000) Effect of the fungicide benomyl on spore germination and hyphal length of the arbuscular mycorrhizal fungus Glomus mosseae. Int Microbiol 3:173–175

    CAS  PubMed  Google Scholar 

  • Chu Q, Wang XX, Yang Y, Chen FJ, Zhang FS, Feng G (2013) Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil. Mycorrhiza 23:497–505

    Article  CAS  PubMed  Google Scholar 

  • Daei G, Ardekani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    Article  CAS  PubMed  Google Scholar 

  • David Jr DD, Nagahashi G, Reider C, Hepperly PR (2007) Inoculation with arbuscular mycorrhizal fungi increases the yield of potatoes in a high P soil. Biol Agric Hortic 25:67–78

    Article  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Estrada B, Aroca R, Azcón-Aguilar C, Barea JM, Ruiz-Lozano JM (2013) Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant Soil 370:175–185

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng G, Su YB, Li XL, Wang H, Zhang FS, Tang CX, Rengel Z (2002a) Histochemical visualization of phosphatase released by arbuscular mycorrhizal fungi in soil. J Plant Nutr 5:969–980

    Google Scholar 

  • Feng G, Zhang FS, Li XL, Tian CY, Tang C, Rengel Z (2002b) Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza 12:185–190

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Garciaromera I, Ocampo JA (1988) Effect of the herbicide MCPA on VA mycorrhizal infection and growth of Pisum sativum. Z Pflanzenernähr Bodenkd 151:225–228

    Article  CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vescular arbuscular mycorrhizal infection in root. New Phytol 84:489–500

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji K (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol 54:753–760

    Article  CAS  PubMed  Google Scholar 

  • Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85:3–14

    Article  Google Scholar 

  • Grattan S, Grieve C (1998) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  Google Scholar 

  • Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21:117–129

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Paruthi IJ, Gupta DC, Mangal JL (1989) Effect of different levels of soil salinity on Meloidogyne javanica infecting okra and brinjal. Pak J Nematol 7:115–119

    Google Scholar 

  • Janos DP (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91

    Article  PubMed  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson CM, Ulrich A (1959) Analytical methods for use in plant analysis. Calif Agr Exp Stn Bull 766:25–78

    Google Scholar 

  • Johnson D, Leake J, Read D (2001) Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. New Phytol 152:555–562

    Article  Google Scholar 

  • Latef A, Hamed AA, He CX (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127:228–233

    Article  Google Scholar 

  • Lehmann A, Barto EK, Powell JR, Rillig MC (2012) Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231–250

    Article  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Twomlow SJ (2008) Effect of agricultural management practices on arbuscular mycorrhizal fungal abundance in low-input cropping systems of southern Africa: a case study from Zimbabwe. Biol Fertil Soils 44:917–923

    Article  Google Scholar 

  • Li HY, Zhu YG, Marschner P, Smith FA, Smith SE (2005) Wheat responses to arbuscular mycorrhizal fungi in a highly calcareous soil differ from those of clover, and change with plant development and P supply. Plant Soil 277:221–232

    Article  CAS  Google Scholar 

  • Li HY, Smith SE, Holloway RE, Zhu YG, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543

    Article  CAS  PubMed  Google Scholar 

  • Martinez V, Läuchli A (1994) Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.). New Phytol 126:609–614

    Article  CAS  Google Scholar 

  • Martinez V, Bernstein N, Läuchli A (1996) Salt-induced inhibition of phosphorus transport in lettuce plants. Physiol Plant 97:118–122

    Article  CAS  Google Scholar 

  • Miransari M, Bahrami H, Rejali F, Malakouti M, Torabi H (2007) Using arbuscular mycorrhiza to reduce the stressful effects of soil compaction on corn (Zea mays L.) growth. Soil Biol Biochem 39:2014–2026

    Article  CAS  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops-what is the cost? New Phytol 206. doi:10.1111/nph.13519

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, et al (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Muok BO, Matsumura A, Ishii T, Odee DW (2009) The effect of intercropping Sclerocarya birrea (A. Rich.) Hochst., millet and corn in the presence of arbuscular mycorrhizal fungi. Afr J Biotechnol 8:807–812

    Google Scholar 

  • Murugensan C, Sonia B, Shuijin H, Sang-Hyon O, Tongmin S (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 171:76–85

    Google Scholar 

  • Navarro JM, Pérez-Tornero O, Morte A (2014) Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol 171:76–85

    Article  CAS  PubMed  Google Scholar 

  • Newsham K, Fitter A, Watkinson A (1994) Root pathogenic and arbuscular mycorrhizal fungi determine fecundity of asymptomatic plants in the field. J Ecol 82:805–814

    Article  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2006) Plant growth and phosphorus uptake in mycorrhizal rangpur lime seedlings under different levels of phosphorus. Pesq Agrop Brasileira 41:93–99

    Article  Google Scholar 

  • Nottingham AT, Turner BL, Winter K, Chamberlain PM, Stott A, Tanner EV (2013) Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. FEMS Microbiol Ecol 4:210–222

    Google Scholar 

  • Oehl F, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Paluch EC (2011) Can commercial AM FUNGI inoculum improve prairie restoration? Colonization and growth effects of fungi on sand prairie plants and smooth brome in field soils. Master thesis, Universty of Wisconsin-La Crosse

  • Rabie G, Almadini A (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210–222

    CAS  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1479

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Schreiner R, Bethlenfalvay G (1997) Mycorrhizae, biocides, and biocontrol 3. Effects of three different fungicides on developmental stages of three AM fungi. Biol Fertil Soils 24:18–26

    Article  CAS  Google Scholar 

  • Schubert S, Neubert A, Schierholt A, Sumer A, Zorb C (2009) Development of salt-resistant maize hybrids: the combination of physiological strategies using conventional breeding methods. Plant Sci 177:196–202

    Article  CAS  Google Scholar 

  • Schweiger P, Jakobsen I (1999) Direct measurement of arbuscular mycorrhizal phosphorus uptake into field-grown winter wheat. Agron J 91:998–1002

    Article  Google Scholar 

  • Schweiger P, Spliid N, Jakobsen I (2001) Fungicide application and phosphorus uptake by hyphae of arbuscular mycorrhizal fungi into field-grown peas. Soil Biol Biochem 33:1231–1237

    Article  CAS  Google Scholar 

  • Sharifi M, Ghorbanli M, Ehrahimzadeh H (2007) Improved growth of salinity stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier and Academic Press, New York, London, Burlington, San Diego

  • Stewart LI, Hamel C, Hogue R, Moutoglis P (2005) Response of strawberry to inoculation with arbuscular mycorrhizal fungi under very high soil phosphorus conditions. Mycorrhiza 15:612–619

    Article  CAS  PubMed  Google Scholar 

  • Thomson BD, Robson AD, Abbott LK (1992) The effect of long-term application of phosphorus-fertilizer on populations of vesicular-arbuscular mycorrhizal fungi in pastures. Aust J Agric Res 43:1131–1142

    Article  CAS  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Tian CY, Shi ZY, Chen ZC, Feng G (2006) Arbuscular mycorrhizal associations in the Gurbantunggut Desert. Chin Sci Bull 51:140–146

    Article  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361

    Article  PubMed  Google Scholar 

  • Wang XJ, Wang XX, Feng G (2015) Optimized nitrogen fertilizer management achieved higher diversity of arbuscular mycorrhiza fungi and high-yielding maize (Zea mays L.). Crop Past Sci. doi:10.1071/CP14160

    Google Scholar 

  • Zhang T, Shi N, Bai DS, Chen YL, Feng G (2012) Arbuscular mycorrhizal fungi promote the growth of Ceratocarpus arenarius (chenopodiaceae) with no enhancement of phosphorus nutrition. PLoS One 7:1–8

    CAS  Google Scholar 

  • Zhu YG, Smith SE (2001) Seed phosphorus (P) content affects growth, and P uptake of wheat plants and theirassociation with arbuscular mycorrhizal (AM) fungi. Plant Soil 231:105–112

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Foundation of China (U1403285, 41461051), the Special Fund for Agro-scientific Research in the Public Interest (201103007) and the Innovative Group Grant of the National Science Foundation of China (31421092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Feng.

Additional information

Responsible Editor: Tatsuhiro Ezawa.

Highlights

• We quantified the role of indigenous AM fungi in promoting crop growth in saline field.

• AM fungi improved P uptake, Na+/K+ ratio, proline or/and soluble sugar accumulation.

• Indigenous AM fungi alleviate high salinity stress of crop in intensified farming system.

• The in-growth core system was modified using a non-mycorrhizal plant species Beta vulgaris.

Electronic supplementary material

ESM 1

(DOC 436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Guo, X., Feng, G. et al. Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant Soil 398, 195–206 (2016). https://doi.org/10.1007/s11104-015-2656-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2656-5

Keywords

Navigation