Skip to main content
Log in

Root morphology, histology and chemistry of nine fern species (pteridophyta) in a temperate forest

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The variability patterns of fern root characteristics have seldom been studied. Here we explored variability in root morphology, histology and chemistry among fern species of temperate forest, and compared the observed patterns with those of seed plants.

Methods

We sampled nine herbaceous fern species from temperate forest in northeastern China, and measured root morphological, histological and chemical characteristics across branch orders for each species.

Results

All nine fern species had 3 or 4 root orders. With increasing root order, diameter, tissue density, cortical thickness and vascular cylinder diameter increased, while specific root length (SRL) and tissue nitrogen concentration decreased. These were similar to the variability patterns that have been reported for seed plants, except for cortex. Like seed plants, nine fern species showed close relationships among root morphological, histological and chemical characteristics in first-order roots, such as diameter and cortex, tissue density and nitrogen concentration, suggesting that the general linkage between root structure and function exists in all vascular plants.

Conclusions

The observed variation within fern root systems is comparable to the reported variation in seed plants, indicating that the same functional constraints control the evolution and development of root systems in vascular plants belonging either to the fern or seed plant lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brach AR, McNaughton SJ, Raynal DJ (1993) Photosynthetic adaptability of two fern species of a northern hardwood forest. Am Fern J 83:47–53

    Article  Google Scholar 

  • Bray JR (1991) Growth, biomass, and productivity of a bracken (Pteridium esculentum) infested pasture in Marlborough Sounds, New Zealand. N Z J Bot 29:169–176

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2005) Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol 165:839–846

    Article  PubMed  Google Scholar 

  • Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiol 144:1890–1898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen WL, Zeng H, Eissenstat DM, Guo DL (2013) Variation of first-order root traits across climatic gradients and evolutionary trends in geological time. Glob Ecol Biogeogr 22:846–856

    Article  Google Scholar 

  • Comas LH, Eissenstat DM (2009) Patterns in root trait variation among 25 co-existing North American forest species. New Phytol 182:919–928

    Article  CAS  PubMed  Google Scholar 

  • Comas LH, Bouma TJ, Eissenstat DM (2002) Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34–43

    Article  Google Scholar 

  • Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerlingz DJ (2012) Evolutionary patterns and biogeochemical significance of angiosperm root traits. Int J Plant Sci 173:584–595

    Article  Google Scholar 

  • Coomes DA, Allen RB, Bentley WA, Burrows LE, Canham CD et al (2005) The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering. J Ecol 93:918–935

    Article  Google Scholar 

  • Craine JM, Lee WG (2003) Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia 134:471–478

    Article  CAS  PubMed  Google Scholar 

  • Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS III (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93:274–285

    Article  Google Scholar 

  • Doussan C, Vercambre G, Pagès L (1999) Water uptake by two contrasting root systems (maize, peach tree): results from a model of hydraulic architecture. Agronomy 19:255–263

    Article  Google Scholar 

  • Eissenstat DM, Yanai RD (1997) The ecology of root lifespan. Adv Ecol Res 27:1–62

    Article  Google Scholar 

  • Esau K (1977) The anatomy of seed plants. Ed. Wiley & Sons, New York

    Google Scholar 

  • Fitter AH (2002) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant root: the hidden half, 3rd edn. Marcel Dekker, Inc, New York, pp 15–32

    Google Scholar 

  • Frensch J, Steudle E (1989) Axial and radial hydraulic resistance to roots of maize (Zea mays L.). Plant Physiol 91:719–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gibson AC, Calkin HW, Nobel PS (1985) Hydraulic conductance and xylem structure in tracheid-bearing plants. IAWA Bull 6:293–302

    Article  Google Scholar 

  • Gu JC, Xu Y, Dong XY, Wang HF, Wang ZQ (2014) Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiol 34:415–425

    Article  PubMed  Google Scholar 

  • Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in 23 Chinese temperate tree species. New Phytol 180:673–683

    Article  PubMed  Google Scholar 

  • Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Hietz P (2010) Fern adaptations to arid environments. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge, pp 140–176

    Chapter  Google Scholar 

  • Holdaway RJ, Richardson SJ, Dickie IA, Peltzer DA, Coomes DA (2011) Species and community level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest. J Ecol 99:954–963

    Article  Google Scholar 

  • Hou GC, Blancaflor EB (2010) Fern root development. In: Beeckman T (ed) Annual plant reviews, root development vol 37. Wiley-Blackwell, Oxford, pp 192–208

  • Hou GC, Hill JP (2004) Developmental anatomy of the fifth shoot-borne root in young sporophytes of ceratopteris richardii. Planta 219:212–220

    Article  CAS  PubMed  Google Scholar 

  • Hou GC, Hill JP, Blancaflor EB (2004) Developmental anatomy and auxin response of lateral root formation in Ceratopteris richardii. J Exp Bot 55:685–693

    Article  CAS  PubMed  Google Scholar 

  • Hummel I, Vile D, Violle C, Devaux J, Ricci B, Blanchard A, Garnier E, Roumet C (2007) Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species. New Phytol 173:313–321

    Article  PubMed  Google Scholar 

  • Jia SX, McLaughlin NB, Gu JC, Li XP, Wang ZQ (2013) Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica. Tree Physiol 33:579–589

    Article  CAS  PubMed  Google Scholar 

  • Karst AL, Lechowicz MJ (2007) Are correlations among foliar traits in ferns consistent with those in the seed plants? New Phytol 173:306–12

    Article  PubMed  Google Scholar 

  • Kessler M (2010) Biogeography of ferns. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University Press, Cambridge, pp 22–60

    Chapter  Google Scholar 

  • Kessler M, Güdel R, Salazar L, Homeier KJ (2014) Impact of mycorrhzation on the abundance, growth and leaf nutrient status of ferns along a tropical elevational gradient. Oecologia 175:887–900

    Article  PubMed  Google Scholar 

  • Kong DL, Ma CN, Zhang Q, Li L, Chen XY, Zeng H, Guo DL (2014) Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytol 203:863–872

    Article  PubMed  Google Scholar 

  • Lee JK, Eom AH, Lee SS, Lee CH (2001) Mycorrhizal symbioses found in roots of fem and its relatives in Korea. J Plant Biol 44:81–86

    Article  Google Scholar 

  • Li A, Guo DL, Wang ZQ, Liu HY (2010) Nitrogen and phosphorus allocation in leaves, twigs, and fine roots across 49 temperate, subtropical and tropical tree species: a hierarchical pattern. Fun Ecol 24:224–232

    Article  Google Scholar 

  • Long YQ, Kong DL, Chen ZG, Zeng H (2013) Variation of the linkage of root function with root branch order. PLoS ONE 8(2), e57153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mei L (2006) Fine root turnover and carbon allocation in manchurian ash and dahurian larch plantations. Dissertation, Northeast Forestry University

  • Picon-Cochard C, Pilon R, Tarroux E, Pages L, Robertson J, Dawson L (2012) Effect of species, root branching order and season on the root traits of 13 perennial grass species. Plant Soil 353:47–57

    Article  CAS  Google Scholar 

  • Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997) Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia 111:302–308

    Article  Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Article  Google Scholar 

  • Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598

    Article  CAS  PubMed  Google Scholar 

  • Purushothaman R, Zaman-Allah M, Mallikarjuna N, Pannirselvam R, Krishnamurthy L, Gowda CLL (2013) Root anatomical traits and their possible contribution to drought tolerance in grain legumes. Plant Prod Sci 16:1–8

    Article  Google Scholar 

  • Raich JW, Russell AE, Vitousek PM (1997) Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawaii. Ecology 78:707–721

    Google Scholar 

  • Richardson SJ, Walker LR (2010) Nutrient ecology of ferns. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University, New York, pp 111–139

    Chapter  Google Scholar 

  • Rieger M, Litvin P (1999) Root system hydraulic conductivity in species with contrasting root anatomy. J Exp Bot 50:201–209

    Article  CAS  Google Scholar 

  • Rothfels CJ, Schuettpelz E (2014) Accelerated rate of molecular evolution for vittarioid ferns is strong and not driven by selection. Syst Biol 63:31–54

    Article  CAS  PubMed  Google Scholar 

  • Roumet C, Urcelay C, Diaz S (2006) Suites of root traits differ between annual and perennial species growing in the field. New Phytol 170:357–368

    Article  PubMed  Google Scholar 

  • Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Fun Ecol 10:717–723

    Article  Google Scholar 

  • Schneider H (1996) The root anatomy of ferns: a comparative study. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perspective. Royal Botanic Gardens, Kew, pp 271–283

    Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, MagallónS LR (2004a) Ferns diversified in the shadow of angiosperms. Nature 428:553–557

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Smith AR, Cranfill R, Hildebrand TJ, Christopher HH, Ranker TA (2004b) Unraveling the phylogeny of polygrammoid ferns (polypodiaceae and grammitidaceae): exploring aspects of the diversification of epiphytic plants. Mol Phylogenet Evol 31:1041–1063

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Smith AR, Pryer KM (2009) Is morphology really at odds with molecules in estimating fern phylogeny? Syst Bot 34:455–475

    Article  Google Scholar 

  • Sharpe JM, Mehltreter K (2010) Ecological insights from fern population dynamics. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University, Cambridge, pp 61–110

    Chapter  Google Scholar 

  • Sharpe JM, Mehltreter K, Walker K (2010) Ecological importance of ferns. In: Mehltreter K, Walker LR, Sharpe JM (eds) Fern ecology. Cambridge University, Cambridge, pp 1–21

    Chapter  Google Scholar 

  • Shi W, Wang ZQ, Liu JL, Gu JC, Guo DL (2008) Fine root morphology of 20 hardwood species in Maoershan natural secondary forest in northeastern China. Chin J Plant Ecol 32:1217–1226 (in Chinese)

    Google Scholar 

  • Siccama TG, Bormann FH, Likens GE (1970) The Hubbard Brook ecosystem study: productivity, nutrients, and phytosociology of the herbaceous layer. Ecol Monogr 40:389–402

    Article  Google Scholar 

  • Smith AR, Pryer KM, Schuettelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Stanich NA, Rothwell GW, Stockey RA (2009) Phylogenetic diversification of equisetum (equisetales) as inferred from lower cretaceous species of British Columbia, Canada. Am J Bot 96:1289–1299

    Article  PubMed  Google Scholar 

  • Tanner EVJ (1985) Jamaican montane forests: nutrient capital and cost of growth. J Ecol 73:553–568

    Article  Google Scholar 

  • Valenzuela-Estrada LR, Vera-Caraballo V, Ruth LE, Eissenstat DM (2008) Root anatomy, morphology, and longevity among root orders in Vaccinium corymbosum (Ericaceae). Am J Bot 95:1506–1514

    Article  PubMed  Google Scholar 

  • Van Arendonk JJCM, Poorter H (1994) The chemical composition and anatomical structure of leaves of grass species differing in relative growth rate. Plant Cell Environ 17:963–970

    Article  CAS  Google Scholar 

  • Vitousek PM, Gerrish G, Turner DR, Walker LR, Mueller-Dombois D (1995) Litterfall and nutrient cycling in four Hawaiian montane rain forests. J Trop Ecol 11:189–203

    Article  Google Scholar 

  • Walker LR, Aplet GH (1994) Growth and fertilization of Hawaiian tree ferns. Biotropica 26:378–383

    Article  Google Scholar 

  • Watkins JE, Rundel PW, Cardelús CL (2007) The influence of life form on carbon and nitrogen relationships in tropical rainforest ferns. Oecologia 153:225–232

    Article  PubMed  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2220

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z et al (2004) The worldwide leaf economics spectrum. Nature 428:821–827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Guoyong Yan, Zhenyu Wang, Na Xu, Xuewei Zhang, Yue Zhang, and Liting Li for their help with the field and laboratory work, and Drs. Chuankuan Wang and Harbin Li for editing the manuscript and insightful comments. This research was supported by Fundamental Research Funds for the Central Universities (DL12CA06), Natural Science Foundation of China (31100470, 30130160) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengquan Wang.

Additional information

Responsible Editor: Alexia Stokes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

(DOC 44 kb)

Supplementary Fig. S1

(DOC 3225 kb)

Supplementary Fig. S2

(DOC 106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Wang, H., Gu, J. et al. Root morphology, histology and chemistry of nine fern species (pteridophyta) in a temperate forest. Plant Soil 393, 215–227 (2015). https://doi.org/10.1007/s11104-015-2484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2484-7

Keywords

Navigation