Skip to main content

Advertisement

Log in

Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background

Litter decomposition is a fundamental process of biogeochemical cycles, and there is a strong consensus that litter mixture interactions are one of the factors driving the decomposition process. A better understanding of how climate change can alter interactions between species and the litter decomposition process could facilitate projections of ecosystem functioning into the future.

Methods

A 24-month litterbag decomposition experiment was carried out in a Mediterranean forest to analyze the effects of climate and species diversity changes on litter mixture interactions and the decomposition process.

Results

In the control plot, synergistic interactions increased with time and species diversity in litter mixtures, leading to more efficient litter decomposition. Drier conditions obtained in the field with a rain exclusion device decreased decomposition rates, resulting in three-fold less synergistic interactions and five-fold more antagonistic interactions during the decomposition process. Furthermore, synergistic interactions were better preserved in the drought conditions with increasing number of species.

Conclusions

Our findings underline how a longer drought season could strongly affect the relationship between biodiversity and ecosystem functioning. Drier climate led to slower mass loss rates and a strong shift in the litter mixture interactions, with fewer synergistic interactions and more antagonistic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CV:

Coefficient of variation

DSH:

Diversity-stability hypothesis

IMC:

Improved microenvironmental condition

NAE:

Non-additive effect

RME:

Relative mixture effect

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography / mass spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream

    Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Almagro M, Martinez-Mena M (2012) Exploring short-term leaf-litter decomposition dynamics in a Mediterranean ecosystem: dependence on litter type and site conditions. Plant Soil 358:323–335

    Article  CAS  Google Scholar 

  • Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

    Article  CAS  PubMed  Google Scholar 

  • Baize D, Girard MC (1998) A sound reference base for soils: the « référentiel pédologique ». INRA eds, Paris

    Google Scholar 

  • Bardgett R (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bonanomi G, Incerti G, Antignani V, Capodilupo M, Mazzoleni S (2010) Decomposition and nutrient dynamics in mixed litter of Mediterranean species. Plant Soil 331:481–496

    Article  CAS  Google Scholar 

  • Cebrian J (1999) Patterns in the fate of production in plant communities. Am Nat 154:449–468

    Article  PubMed  Google Scholar 

  • Chen BM, Peng SL, D’Antonio CM, Li DJ, Ren WT (2013) Non-additive effects on decomposition from mixing litter of the invasive Mikania micrantha H.B.K. with native plants. PLos One 8(6):e66289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chomel M, Fernandez C, Bousquet-Melou A, Gers C, Monnier Y, Santonja M, Gauquelin T, Gros R, Lecareux C, Baldy V (2014) Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. J Ecol 102:411–424

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Perez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van Bodegom P, Brovkin V, Chatain A, Callaghan TV, Diaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaeieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Coulis M, Hättenschwiler S, Fromin N, David JF (2013) Macroarthropod-microorganism interactions during the decomposition of Mediterranean shrub litter at different moisture levels. Soil Biol Biochem 64:114–121

    Article  CAS  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66

    Article  CAS  PubMed  Google Scholar 

  • De Marco A, Meola A, Maisto G, Giordano M, De Santo AV (2011) Non-additive effects of litter mixtures on decomposition of leaf litters in a Mediterranean maquis. Plant Soil 344:305–317

    Article  CAS  Google Scholar 

  • Dirks I, Navon Y, Kanas D, Dumbur R, Grünzweig JM (2010) Atmospheric water vapor as driver of litter decomposition in Mediterranean shrublands and grassland during rainless seasons. Glob Chang Biol 16:2799–2812

    Article  Google Scholar 

  • Emberger C, Gaussen H, Kassas M, de Philippis A (1963) Bioclimatic map of the Mediterranean Zone, explanatory notes. UNESCO-FAO, Paris

    Google Scholar 

  • Folin O, Denis W (1915) A colorimetric method for the determination of phenols (and phenol derivates) in urine. J Biol Chem 22:305–308

    CAS  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Gessner MO, Swan CM, Dang CK, Mckie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380

    Article  PubMed  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol 6:751–765

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104

    Article  Google Scholar 

  • Gobat JM, Aragno M, Matthey W (2010) Le sol vivant : bases de pédologie, biologie des sols, 3rd edn. Presse polytechniques et universitaires romandes, Lausanne

    Google Scholar 

  • Harguindeguy NP, Blundo CM, Gurvich DE, Diaz S, Cuevas E (2008) More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through litter chemistry. Plant Soil 303:151–159

    Article  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218

    Article  Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Couteaux MM, Roy J, Bonal D (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175

    Article  PubMed  Google Scholar 

  • Hättenschwiler S, Coq S, Barantal S, Handa IT (2011) Leaf traits and decomposition in tropical rainforest: revisiting some commonly held views and towards a new hypothesis. New Phytol 189:950–965

    Article  PubMed  Google Scholar 

  • Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371

    Article  Google Scholar 

  • Hilaire C, Orts JP, Boer B, Gauquelin T (2012) Le domaine de l’Observatoire de Haute-Provence (OHP): Hermas et chênaie pubescente, du XVIIIe siècle à nos jours. Courrier Scientifique du Parc Naturel Régional du Luberon et de la Réserve Biosphère Luberon-Lure 11:8–21

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hoorens B, Aerts R, Stroetenga M (2002) Litter quality and interactive effects in litter mixtures: more negative interactions under elevated CO2? J Ecol 90:1009–1016

    Article  Google Scholar 

  • Hoorens B, Stroetenga M, Aerts R (2010) Litter mixture interactions at the level of plant functional types are additive. Ecosystems 13:90–98

    Article  Google Scholar 

  • Incerti G, Bonanomi G, Giannino F, Rutigliano FA, Piermatteo D, Castaldi S, De Marco A, Fierro A, Fioretto A, Maggi O, Papa S, Persiani AM, Feoli E, Virzo de Santo A, Mazzoleni S (2011) Litter decomposition in Mediterranean ecosystems: modeling the controlling role of climatic conditions and litter quality. Appl Soil Ecol 49:148–157

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2013) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources 2006 - world soil resources reports No. 103. FAO, Rome

    Google Scholar 

  • Keith AM, van der Wal R, Brooker RW, Osler GHR, Chapman SJ, Burslem DFRP, Elston DA (2008) Increasing litter species richness reduces variability in a terrestrial decomposer system. Ecology 89:2657–2664

    Article  PubMed  Google Scholar 

  • Knops JMH, Wedin D, Tilman D (2001) Biodiversity and decomposition in experimental grassland ecosystems. Oecologia 126:429–433

    Article  Google Scholar 

  • Kominoski JS, Pringle CM, Ball BA, Bradford MA, Coleman DC, Hall DB, Hunter MD (2007) Non-additive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88:1167–1176

    Article  CAS  PubMed  Google Scholar 

  • Lecerf A, Risnoveanu G, Popescu C, Gessner MO, Chauvet E (2007) Decomposition of diverse litter mixtures in streams. Ecology 88:219–227

    Article  PubMed  Google Scholar 

  • Lensing JR, Wise DH (2007) Impact of changes in rainfall amounts predicted by climate-change models on decomposition in a deciduous forest. Appl Soil Ecol 35:523–534

    Article  Google Scholar 

  • Leroy CJ, Marks JC (2006) Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshw Biol 51:605–617

    Article  Google Scholar 

  • Maisto G, De Marco A, Meola A, Sessa L, De Santo AV (2011) Nutrient dynamics in litter mixtures of four Mediterranean maquis species decomposing in situ. Soil Biol Biochem 43:520–530

    Article  CAS  Google Scholar 

  • Makkonen M, Berg MP, van Logtestijn RSP, van Hal JR, Aerts R (2013) Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122:987–997

    Article  Google Scholar 

  • Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob Ecol Biogeogr 19:423–431

    Google Scholar 

  • Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989) Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant Soil 115:189–198

    Article  Google Scholar 

  • Penuelas J, Estiarte M, Kimball BA, Idso SB, Pinter PJ, Wall GW, Garcia RL, Hansaker DJ, LaMorte RL, Hendrix DL (1996) Variety of responses of plant phenolic concentration to CO2 enrichment. J Exp Bot 47:1463–1467

    Article  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walter BH, Walker M, Wall DH (2000) Biodiversity—global biodiversity for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Sanpera-Calbet I, Lecerf A, Chauvet E (2009) Leaf diversity influences in-stream litter decomposition through effects on shredders. Freshw Biol 54:1671–1682

    Article  Google Scholar 

  • Sardans J, Penuelas J (2013) Pant-soil interactions in Mediterranean forest and shrublands: impact of climate change. Plant Soil 365:1–33

    Article  CAS  Google Scholar 

  • Saura-Mas S, Estiarte M, Penuelas J, Lloret F (2012) Effects of climate change on leaf litter decomposition across post-fire plant regenerative groups. Environ Exp Bot 77:274–282

    Article  Google Scholar 

  • Schimel JP, Hättenschwiler S (2007) Nitrogen transfer between decomposing leaves of different N status. Soil Biol Biochem 39:1428–1436

    Article  CAS  Google Scholar 

  • Schindler MH, Gessner MO (2009) Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641–1649

    Article  PubMed  Google Scholar 

  • Schroter D, Cramer W, Leemans R, Prentice IC, Araujo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, Kankaanpaa S, Klein RJT, Lavorel S, Lindner M, Metzger MJ, Meyer J, Mitchell TD, Reginster I, Rounsevell M, Sabate S, Sitch S, Smith B, Smith J, Smith P, Sykes MT, Thonicke K, Thuiller W, Tuck G, Zaehle S, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  PubMed  Google Scholar 

  • Srivastava DS, Cardinale BJ, Downing AL, Duffy JE, Jouseau C, Sankaran M, Wright JP (2009) Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90:1073–1083

    Article  PubMed  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Throop HL, Archer SR (2007) Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland. Ecol Appl 17:1809–1823

    Article  PubMed  Google Scholar 

  • Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    Article  CAS  PubMed  Google Scholar 

  • Tiunov AV, Scheu S (2005) Facilitative interactions rather than resource partitioning drive diversity‐functioning relationships in laboratory fungal communities. Ecol Lett 8:618–625

    Article  Google Scholar 

  • Van Soest PJ, Wine RH (1968) The determination of lignin and cellulose in acid detergent fiber with permanganate. J Assist Off Chem 51:780–787

    Google Scholar 

  • Vogel A, Eisenhauer N, Weigelt A, Scherer-Lorenzen M (2013) Plant diversity does not buffer drought effects on early-stage litter mass loss rates and microbial properties. Glob Chang Biol 19:2795–2803

    Article  PubMed  Google Scholar 

  • Vos VCA, van Ruijven J, Berg MP, Peeters ETHM, Berendse F (2013) Leaf litter quality drives litter mixing effects through complementary resource use among detritivores. Oecologia 173:269–280

    Article  PubMed  Google Scholar 

  • Walter J, Hein R, Beierkuhnlein C, Hammerl V, Jentsch A, Schadler M, Schuerings J, Kreyling J (2013) Combined effects of multifactor climate change and land-use on decomposition in temperate grassland. Soil Biol Biochem 60:10–18

    Article  CAS  Google Scholar 

  • Wardle DA, Bonner KI, Nicholson KS (1997) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79:247–258

    Article  Google Scholar 

  • Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952

    Article  Google Scholar 

  • Wieder WR, Cleveland CC, Townsend AR (2009) Control over leaf litter decomposition in wet tropical forests. Ecology 90:3333–3341

    Article  PubMed  Google Scholar 

  • Wu DD, Li TT, Wan SQ (2013) Time and litter species composition affect litter-mixing effects on decomposition rates. Plant Soil 371:355–366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sylvie Dupouyet, Jean-Philippe Orts and Ilja Reiter for their contributions to the set-up of the experiment and the field work, and Caroline Lecareux and Germain Boungou for their assistance on the chemical analyses. We also thank Stephan Hättenschwiler for his contribution to the chemical analyses. This study was funded by the EC2CO-BIOEFFECT program (CNRS) and the French National Research Agency (ANR) through the SecPriMe2 project (ANR-12-BSV7-0016-01), the research federation ECCOREV FR3098 and the LABEX OT-Med. We also thank Europe and the PACA region of France for sponsoring Mathieu Santonja’s PhD work. Finally, we thank ATT (scientific language editing services) for proofreading the draft manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Santonja.

Additional information

Responsible Editor: Alfonso Escudero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santonja, M., Fernandez, C., Gauquelin, T. et al. Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil 393, 69–82 (2015). https://doi.org/10.1007/s11104-015-2471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2471-z

Keywords

Navigation