Skip to main content

Advertisement

Log in

Direct and indirect effects of nitrogen additions on fine root decomposition in a subtropical bamboo forest

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

As an important contributor to carbon (C) flux in the global C cycle, fine root litter in forests has the potential to be affected by the elevated nitrogen (N) deposition observed globally. However, the direct effects (on current fine root decomposition) and indirect effects (on root quality and subsequent decomposition) of N deposition on fine root decomposition are poorly understood.

Methods

We conducted a 5-year field experiment in a Pleioblastus amarus bamboo forest in southwestern China. In the first 3 years of the experiment, N-treated sites (0, 50, 150, and 300 kg N ha−1 year−1, respectively) and fine roots under two N regimes (0 and 150 kg N ha−1 year−1; 0 N-Root/+N-Root, respectively) were prepared. Next, these two fine root treatments were applied to a 2-year decomposition experiment in the N-treated sites under continuous N treatment.

Results

Nitrogen additions increased fine root density, concentrations of N, P, and lignin in fine roots, and concentrations of TOC, TN, NH4 +-N and NO3 -N in the soil, and decreased the soil pH. The decomposition constant k decreased under N addition treatments, and the decomposition rate of + N-Root was lower than that of 0 N-Root, suggesting that both the direct and indirect effects of N additions on fine root decomposition rates were negative. Both N addition and root substrate changes led to an increase in the residual lignin content during decomposition. Nitrogen additions significantly decreased the loss of C, N, P, K, Ca and Mg during decomposition.

Conclusions

The changes in the soil environment and increased root lignin concentration as a result of N additions may be the mechanism underlying the negative direct and indirect effects observed. Elevated fine root biomass input and slower degradation rates may be a potential mechanism explaining the increase in soil TOC and TN under N treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Biosci 48(11):921–934

    Article  Google Scholar 

  • Baron JS, Hall EK, Nolan BT, Finlay JC, Bernhardt ES, Harrison JA, Chan F, Boyer EW (2013) The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry 114:71–92. doi:10.1007/s10533-012-9788-y

    Article  CAS  Google Scholar 

  • Berg B (1986) Nutrient release from litter and humus in coniferous forest soils – a mini review. Scand J Forest Res 1(1–4):359–369

    Article  Google Scholar 

  • Berg B, Laskowski R (2006) Litter decomposition: A guide to carbon and nutrient turnover. Elsevier Ltd., Burlington

    Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5:1–25

    Article  CAS  Google Scholar 

  • Berg B, McClaugherty C (2008) Plant litter: Decomposition, humus formation, carbon sequestration, 2nd edn. Springer, Heidelberg

    Book  Google Scholar 

  • Berg B, Staaf H (1980) Decomposition rate and chemical changes of scots pine needle litter II. Influence of chemical composition. Ecol Bull 32:373–390

    CAS  Google Scholar 

  • Birouste M, Kazakou E, Blanchard A, Roumet C (2011) Plant traits and decomposition: are the relationships for roots comparable to those for leaves? Ann Bot. doi:10.1093/aob/mcr297

    PubMed Central  PubMed  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-M, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition on plant diversity : a synthesis. Ecol Appl 20:30–59. doi:10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  • Boddy E, Hill PW, Farrar J, Jones DL (2007) Fast turnover of low molecular weight components of the dissolved organic carbon pool of temperate grassland field soils. Soil Biol Biochem 39:827–835. doi:10.1016/j.soilbio.2006.09.030

    Article  CAS  Google Scholar 

  • Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecol Manag 196:43–56. doi:10.1016/j.foreco.2004.03.011

    Article  Google Scholar 

  • Burton AJ, Pregitzer KS, Reuss RW, Hendrick RL, Allen MF (2002) Root respiration in North American forests: effects of nitrogen concentration and temperature across biomes. Oecologia 131:559–568. doi:10.1007/s00442-002-0931-7

    Article  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111:1–11. doi:10.1007/s004420050201

    Article  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecol 81:2359–2365. doi:10.1890/0012-9658(2000)081[2359:MESELD]2.0.CO;2

    Article  Google Scholar 

  • Chen X, Zhang X, Zhang Y, Booth T, He X (2009) Changes of carbon stocks in bamboo stands in China during 100 years. Forest Ecol Manag 258:1489–1496. doi:10.1016/j.foreco.2009.06.051

    Article  Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad Sci U S A 103:10316–10321. doi:10.1073/pnas.0600989103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui J, Zhou J, Peng Y, He Y, Yang H, Mao J, Zhang M, Wang Y, Wang S (2014) Atmospheric wet deposition of nitrogen and sulfur in the agroecosystem in developing and developed areas of Southeastern China. Atmosph Envrion 89:102–108. doi:10.1016/j.atmosenv.2014.02.007

    Article  CAS  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HLR, Chen Z (eds) Climate change 2007, the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Van Noije T, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006) Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem Cy 20(4). doi:10.1029/2005GB002672

  • Falconer GJ, Wright JW, Beall HW (1933) The decomposition of certain types of fresh litter under field conditions. Am J Bot 20:196–203

    Article  CAS  Google Scholar 

  • Fang H, Mo J, Peng S, Li Z, Wang H (2007) Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil 297:233–242. doi:10.1007/s11104-007-9339-9

    Article  CAS  Google Scholar 

  • Fang YT, Gundersen P, Vogt RD, Koba K, Chen F, Chen X, Yoh M (2011) Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems. J Forest Res 16:341–350. doi:10.1007/s10310-011-0267-4

    Article  CAS  Google Scholar 

  • FAO (2010) Global forest resources assessment 2010: Main report. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fitter A (2002) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: The hidden half. Marcel Dekker, New York

    Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Article  Google Scholar 

  • Fujii S, Takeda H (2010) Dominant effects of litter substrate quality on the difference between leaf and root decomposition process above- and belowground. Soil Biol Biochem 42:2224–2230. doi:10.1016/j.soilbio.2010.08.022

    Article  CAS  Google Scholar 

  • Fujimaki R, Takeda H, Wiwatiwitaya D (2008) Fine root decomposition in tropical dry evergreen and dry deciduous forests in Thailand. J Forest Res 13:338–346. doi:10.1007/s10310-008-0087-3

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vörösmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226. doi:10.1007/s10533-004-0370-0

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Sci 320:889–892. doi:10.1126/science.1136674

    Article  CAS  Google Scholar 

  • Gan H, Zak DR, Hunter MD (2013) Chronic nitrogen deposition alters the structure and function of detrital food webs in a northern hardwood ecosystem. Ecol Appl 23:1311–1321. doi:10.1890/12-1895.1

    Article  PubMed  Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biol 6:751–765. doi:10.1046/j.1365-2486. 2000.00349.x

    Article  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31. doi:10.1046/j.1469-8137.2000.00681.x

    Article  Google Scholar 

  • Grimshaw HM, Allen SE, Parkinson JA (1989) Nutrient elements. In: Allen SE (ed) Chemical analysis of ecological material. Blackwell Scientific, Oxford, pp 81–159

    Google Scholar 

  • Helmisaari HS, Saarsalmi A, Kukkola M (2009) Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland. Plant Soil 314:121–132. doi:10.1007/s11104-008-9711-4

    Article  CAS  Google Scholar 

  • Hendricks JJ, Nadelhoffer KJ, Aber JD (1993) Assessing the role of fine roots in carbon and nutrient cycling. Trends Ecol Evol 8:174–178. doi:10.1016/0169-5347(93)90143-D

    Article  CAS  PubMed  Google Scholar 

  • Hobbie SE (2008) Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecol 89:2633–2644. doi:10.1890/07-1119.1

    Article  Google Scholar 

  • Hobbie SH, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecol 81:1867–1877. doi:10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2

    Article  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513. doi:10.1007/s00442-009-1479-6

    Article  PubMed  Google Scholar 

  • Hu ZY, Xu CK, Zhou LN, Sun BH, He YQ, Zhou J, Cao ZH (2007) Contribution of atmospheric nitrogen compounds to N deposition in a broadleaf forest of southern China. Pedosphere 17:360–365. doi:10.1016/S1002-0160(07)60043-5

    Article  CAS  Google Scholar 

  • Huttunen L, Aphalo PJ, Lehto T, Niemela P, Kuokkanen K, Kellomaki S (2009) Effects of elevated temperature, elevated CO2 and fertilization on quality and subsequent decomposition of silver birch leaf litter. Soil Biol Biochem 41:2414–2421. doi:10.1016/j.soilbio.2009.08.014

    Article  CAS  Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Prantice Hall Inc., Englewood Cliffs

    Google Scholar 

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:7362–7366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jia S, Wang Z, Li X, Sun Y, Zhang X, Liang A (2010) N fertilization affects on soil respiration, biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China. Plant Soil 333:325–336. doi:10.1007/s11104-010-0348-8

    Article  CAS  Google Scholar 

  • Jones JB, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis. Soil Science Society of America, Inc., Madison, pp 390–428

    Google Scholar 

  • Jourdan C, Silva EV, Goncalves JLM, Ranger J, Moreira RM, Laclau JP (2008) Fine root production and turnover in Brazilian Eucalyptus plantations under contrasting nitrogen fertilization regimes. Forest Ecol Manag 256:396–404. doi:10.1016/j.foreco.2008.04.034

    Article  Google Scholar 

  • Kalembasa SJ, Jenkinson DSA (1973) comparative study of titrimetric and gravimetric methods for determination of organic carbon in soil. J Sci Food Agr 24:1085–1090

    Article  CAS  Google Scholar 

  • Kaspari M, Garcia MN, Harms KE, Santana M, Wright SJ, Yavitt JB (2008) Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol Lett 11:35–43. doi:10.1111/j.1461-0248.2007.01124.x

    PubMed  Google Scholar 

  • Keeler BL, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosyst 12:1–15. doi:10.1007/s10021-008-9199-z

    Article  CAS  Google Scholar 

  • Keyser P, Kirk TK, Zeikus IG (1978) Ligninolytic enzyme of phanerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797

    PubMed Central  CAS  PubMed  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: a meta-analysis. Ecol 86:3252–3257. doi:10.1890/05-0150

    Article  Google Scholar 

  • Lee KH, Jose S (2003) Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecol Manag 185:263–273. doi:10.1016/S0378-1127(03)00164-6

    Article  Google Scholar 

  • Lin CF, Yang YS, Guo JF, Chen G, Xie J (2011) Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions. Plant Soil 338:311–327. doi:10.1007/s11104-010-0547-3

    Article  CAS  Google Scholar 

  • Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nat 494:459–462. doi:10.1038/nature11917

    Article  CAS  Google Scholar 

  • Ludovici KH, Kress LW (2006) Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes. Can J Forest Res 36:105–111

    Article  CAS  Google Scholar 

  • Magill AH, Aber JD (1998) Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203:301–311. doi:10.1023/A:1004367000041

    Article  CAS  Google Scholar 

  • Matson P, Lohse K, Jall SJ (2002) The globalization of nitrogen: consequences for terrestrial ecosystems. Ambio 31:113–119. doi:10.1579/0044-7447-31.2.113

    PubMed  Google Scholar 

  • Mo J, Zhang W, Zhu W, Gundersen P, Fang Y, Li D, Wang H (2007) Nitrogen addition reduces soil respiration in a mature tropical forest in southern. Global Chang Biol 14:1–10. doi:10.1111/j.1365-2486.2007.01503.x

    Article  Google Scholar 

  • Nadelhoffer KJ, Raich JW (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecol 73:1139–1147

    Article  Google Scholar 

  • Nambiar EKS, Fife DF (1991) Nutrient retranslocation in temperate conifers. Tree Physiol 9:185–207. doi:10.1093/treephys/9.1-2.185

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, OC, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. Agronomy Society of America and Soil Science Society of America, Madison, pp 539–577

    Google Scholar 

  • Nikula S, Vapaavuori E, Manninen S (2010) Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition. Environ Poll 158:2132–2142. doi:10.1016/j.envpol.2010.02.025

    Article  CAS  Google Scholar 

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine-root production dominates the response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci 101:9689–9693. doi:10.1073/pnas.0403491101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • NRC (National Research Council (1996) Understanding marine biodiversity. National Academy Press, Washington

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, Part 2. Agronomy Society of America and Soil Science Society of America, Madison, pp 403–430

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecol 44:322–331

    Article  Google Scholar 

  • Ostertag R, Hobbie SE (1999) Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia 121:564–573. doi:10.1007/s0044 20050963

    Article  Google Scholar 

  • Powers JS, Treseder KK, Lerdau MT (2005) Fine roots, arbuscular mycorrhizal hyphae and soil nutrients in four neotropical rain forests: patterns across large geographic distances. New Phytol 165:913–921. doi:10.1111/j.1469-8137.2004.01279.x

    Article  CAS  PubMed  Google Scholar 

  • Pregitzer KS, Burton A (1992) Foliar sulfur and nitrogen along an 800-km pollution gradient. Can J Forest Res 22:1761–1769

    Article  CAS  Google Scholar 

  • Rabalais NN (2002) Nitrogen in aquatic ecosystems. Ambio 31:102–112. doi:10.1579/ 0044-7447-31.2.102

    PubMed  Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437. doi:10.1038/ngeo230

    Article  CAS  Google Scholar 

  • Ring E, Jacobson S, Högbom L (2011) Long-term effects of nitrogen fertilization on soil chemistry in three Scots pine stands in Sweden. Can J Forest Res 41:279–288. doi:10.1139/X10-208

    Article  CAS  Google Scholar 

  • Rowland AP, Roberts JD (1994) Lignin and cellulose fractionation in decomposition studies using acid-detergent fiber methods. Commun Soil Sci Plan 25:26–277

    Article  Google Scholar 

  • SFAPRC (2010) Statistics of forest resources in China (2004–2008). State Forestry Administration, People’s Republic of China, Available: http://cfdb.forestry.gov.cn:443/showpdf.action. Accessed 2014 Aug 16

    Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. doi:10.1007/s004420100740

    Article  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404. doi:10.1016/j.soilbio.2009.10.014

    Article  CAS  Google Scholar 

  • Song X, Jiang H, Zhang Z, Zhou G, Zhang S, Peng C (2013) Interactive effects of elevated UV-B radiation and N deposition on decomposition of Moso bamboo litter. Soil Biol Biochem 69:11–16. doi:10.1016/j.soilbio.2013.10.036

    Article  Google Scholar 

  • Sun T, Mao Z, Han Y (2013) Slow decomposition of very fine roots and some factors controlling the process: a 4-year experiment in four temperate tree species. Plant Soil 372:445–458. doi:10.1007/s11104-013-1755-4

    Article  CAS  Google Scholar 

  • Tateno R, Hishi T, Takeda H (2004) Above- and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. Forest Ecol Manag 193:297–306. doi:10.1016/j.foreco.2003.11.011

    Article  Google Scholar 

  • Tu LH, Hu TX, Zhang J, Li RH, Dai HZ, Luo SH (2011) Short-term simulated nitrogen deposition increases carbon sequestration in a Pleioblastus amarus plantation. Plant Soil 340:383–396. doi:10.1007/s11104-010-0610-0

    Article  CAS  Google Scholar 

  • Tu LH, Hu TX, Zhang J, Huang LH, Xiao YL, Chen G, Hu HL, Liu L, Zheng JK, Xu ZF, Chen LH (2013a) Nitrogen distribution and cycling through water flows in a subtropical bamboo forest under high level of atmospheric deposition. PLoS One 8:e75862. doi:10.1371/journal.pone.0075862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tu LH, Hu TX, Zhang J, Li XW, Hu HL, Liu L, Xiao YL (2013b) Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem. Soil Biol Biochem 58:255–264. doi:10.1016/j.soilbio.2012.12.005

    Article  CAS  Google Scholar 

  • Tu LH, Chen G, Peng Y, Hu HL, Hu TX, Zhang J, Li XW, Liu L, Tang Y (2014a) Soil biochemical responses to nitrogen addition in a bamboo forest. PLoS One 9:e102315. doi:10.1371/journal.pone.0102315

    Article  PubMed Central  PubMed  Google Scholar 

  • Tu LH, Hu HL, Chen G, Peng Y, Xiao YL, Hu TX, Zhang J, Li XW, Liu L, Tang Y (2014b) Nitrogen addition significantly affects forest litter decomposition under high levels of ambient nitrogen deposition. PLoS One 9:e88752. doi:10.1371/journal.pone.0088752

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Groenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci U S A 103:6571–6574. doi:10.1073/pnas.0509038103

    Article  PubMed Central  PubMed  Google Scholar 

  • Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alteration of the global nitrogen cycle: sources and consequences. Ecol Appl 7:737–750. doi:10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2

    Google Scholar 

  • Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecol Appl 14:1172–1177. doi:10.1890/03-5120

    Article  Google Scholar 

  • Wang C, Han S, Zhou Y, Yan C, Cheng X, Zheng X, Li M (2012) Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China. PLoS One 7:e31042. doi:10.1371/journal.pone. 0031042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao YL, Tu LH, Hu TX, Zhang J, Li XW, Hu HL (2013) Early effects of simulated nitrogen deposition on annual nutrient input from litterfall in a Pleioblastus amarus plantation in rainy area of West China. Acta Ecol Sin 33:7355–7363. doi:10.5846/stxb201208301224, in Chinese with English abstract

    Article  CAS  Google Scholar 

  • Xu ZF, Tu LH, Hu TX, Zhang J, Li XW, Hu HL (2013) Implications of greater than average increases in nitrogen deposition on the western edge of the Szechwan Basin, China. Environ Poll 177:201–202. doi:10.1016/j.envpol.2012.12.031

    Article  CAS  Google Scholar 

  • Yang YS, Chen GS, Guo JF, Lin P (2004) Decomposition dynamic of fine roots in a mixed forest of Cunninghamia lanceolata and Tsoongiodendron odonum in mid-subtropics. Ann Forest Sci 61:65–72. doi:10.1051/forest:2003085

    Article  CAS  Google Scholar 

  • Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93. doi:10.1093/jpe/rtn002

    Article  Google Scholar 

  • Zhao X, Yan X, Xiong Z, Xie Y, Xing G, Shi S, Zhu Z (2009) Spatial and temporal variation of inorganic nitrogen wet deposition to the Yangtze River Delta region, China. Water Air Soil Poll 203:277–289. doi:10.1007/s11270-009-0011-2

    Article  CAS  Google Scholar 

  • Zogg GP, Zak DR, Burton AJ, Pregitzer KS (1996) Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability. Tree Physiol 16:719–725. doi:10.1093/treephys/16.8.719

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (No. 31300522), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20125103120018) and the Scientific Research Fund of Sichuan Provincial Education Department of China (No. 12ZA118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-hua Tu.

Additional information

Responsible Editor: Simon Jeffery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Lh., Peng, Y., Chen, G. et al. Direct and indirect effects of nitrogen additions on fine root decomposition in a subtropical bamboo forest. Plant Soil 389, 273–288 (2015). https://doi.org/10.1007/s11104-014-2353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2353-9

Keywords

Navigation