Skip to main content
Log in

Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): an incubation study

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Olive mill wastewater (OMW) generated in Mediterranean countries is partly disposed of on soil. Its underlying fate mechanisms and influences on plant growth are still largely unknown. Our goal was to understand OMW organic matter (OMW-OM) degradation in soil and its phytotoxic effects. We hypothesized that OMW phytotoxicity decreased with degradation of its phenolic components.

Methods

In a 60 day incubation study, we monitored soil respiration, extractable total phenolic content (TPC) and carbon isotope ratio (δ13C) of OMW treated Israeli soil. The soil was extracted using accelerated solvent extraction (ASE) and its extracts were exemplarily analyzed for four phenolic substances by LC/MS. Phytotoxicity of soil and soil extracts were tested using a Lepidium sativum seed germination bioassay.

Results

Soil respiration was 2.5 times higher for OMW treated soil with two respiration maxima and indicated a degradation of up to 27 % of the added OMW-OM. Four phases of OMW-OM degradation were identified: (i) degradation of easily degradable OMW-OM and transformation of phenolic compounds, (ii) intermediate suppression of phytotoxicity, (iii) degradation of phytotoxic phenolic compounds and (iv) significant physical immobilization of phytotoxic compounds.

Conclusion

Environmental conditions during and after OMW disposal on soil ought to favor fast degradation of OMW-OM, minimizing their physical immobilization and phytotoxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambardar S, Vakhlu J (2013) Plant growth promoting bacteria from crocus sativus rhizosphere. World J Microbiol Biotechnol 29:2271–2279. doi:10.1007/s11274-013-1393-2

    Article  CAS  PubMed  Google Scholar 

  • Angerosa F, Bréas O, Contento S, Guillou C, Reniero F, Sada E (1999) Application of stable isotope ratio analysis to the characterization of the geographical origin of olive oils. J Agric Food Chem 47:1013–1017. doi:10.1021/jf9809129

    Article  CAS  PubMed  Google Scholar 

  • Arapoglou D, Doula M, Kavvadias V, Iconomou D, Theocharopoulos S, Tountas P (2010) Monitoring of phenols concentration in soil of olive oil mill waste disposal site. Proceedings of the 2nd international conference on hazardous and industrial waste management: 477–479

  • Barbera AC, Maucieri C, Cavallaro V, Ioppolo A, Spagna G (2013) Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric Water Manag 119:43–53

    Article  Google Scholar 

  • Ben Sassi A, Boularbah A, Jaouad A, Walker G, Boussaid A (2006) A comparison of olive oil mill wastewaters (OMW) from three different processes in morocco. Process Biochem 41:74–78

  • Bianchi G, Angerosa F, Camera L, Reniero F, Anglani C (1993) Stable carbon isotope ratios (carbon-13/carbon-12) of olive oil components. J Agric Food Chem 41:1936–1940

    Article  CAS  Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogolte BT, Ehlers GAC, Braun R, Loibner AP (2007) Estimation of PAH bioavailability to lepidium sativum using sequential supercritical fluid extraction - a case study with industrial contaminated soils. Eur J Soil Biol 43:242–250. doi:10.1016/j.ejsobi.2007.02.007

  • Boukhoubza F, Ait Boughrous A, Yacoubi-Khebiza M, Jail A, Hassani L, Loukili Idrissi L, Nejmeddine A (2008) Impact of olive oil wastewater on the physicochemical and biological quality of groundwater in the haouz plain, south of marrakesh (morocco). Environ Technol 29:959–974. doi:10.1080/09593330802131669

    Article  CAS  PubMed  Google Scholar 

  • Box JD (1983) Investigation of the folin-ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Resour 17:511–525

    CAS  Google Scholar 

  • Brant JB, Sulzman EW, Myrold DD (2006) Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation. Soil Biol Biochem 38:2219–2232

    Article  CAS  Google Scholar 

  • Casazza AA, Aliakbarian B, Mantegna S, Cravotto G, Perego P (2010) Extraction of phenolics from vitis vinifera wastes using non-conventional techniques. J Food Eng 100:50–55. doi:10.1016/j.jfoodeng.2010.03.026

    Article  CAS  Google Scholar 

  • Chartzoulakis K, Psarras G, Moutsopoulou M, Stefanoudaki E (2010) Application of olive mill wastewater to a cretan olive orchard: effects on soil properties, plant performance and the environment. Agric Ecosyst Environ 138:293–298

    Article  Google Scholar 

  • Colarieti M, Toscano G, Greco G (2006) Toxicity attenuation of olive mill wastewater in soil slurries. Environ Chem Lett 4:115–118

    Article  CAS  Google Scholar 

  • Dalton BR, Blum U, Weed SB (1989) Plant phenolic acids in soils: Sorption of ferulic acid by soil and soil components sterilized by different techniques. Soil Biol Biochem 21:1011–1018. doi:10.1016/0038-0717(89)90038-2

    Article  CAS  Google Scholar 

  • Deeb AA, Fayyad MK, Alawi MA (2012) Separation of polyphenols from jordanian olive oil mill wastewater. Chromatogr Res Int 2012:8. doi:10.1155/2012/812127

    Article  Google Scholar 

  • Di Serio MG, Lanza B, Mucciarella MR, Russi F, Iannucci E, Marfisi P, Madeo A (2008) Effects of olive mill wastewater spreading on the physico-chemical and microbiological characteristics of soil. Int Biodeterior Biodegrad 62:403–407

    Article  Google Scholar 

  • DIN ISO 10694 (1996) Bodenbeschaffenheit-Bestimmung von organischem Kohlenstoff und Gesamtkohlenstoff nach trockener Verbrennung (Elementaranalyse). Beuth, Berlin

  • DIN ISO 11265 (1997) Bodenbeschaffenheit-Bestimmung der spezifischen elektrischen Leitfähigkeit. Beuth, Berlin

  • DIN ISO 11272 (2001) Bodenbeschaffenheit–Bestimmung der Trockenrohdichte. Beuth, Berlin

  • DIN ISO 11277 (1998) Bodenbeschaffenheit-Bestimmung der Partikelgrößenverteilung in Mineralböden. Verfahren mittels Siebung und Sedimentation. Beuth, Berlin

  • DIN ISO 16072 (2005) Soil quality – laboratory methods for determination of microbial soil respiration. Beuth, Berlin

  • DIN ISO 38404–5 (2009) Deutsche einheitsverfahren zur wasser-, abwasser- und schlammuntersuchung - physikalische und physikalisch-chemische kenngrößen (gruppe c) - teil 5: Bestimmung des ph-werts (c 5). Beuth, Berlin

  • Fisher JA, Scarlett MJ, Stott AD (1997) Accelerated solvent extraction: an evaluation for screening of soils for selected u.S. Epa semivolatile organic priority pollutants. Environ Sci Technol 31:1120–1127. doi:10.1021/es9606283

    Article  CAS  Google Scholar 

  • Gangwar S, Singh VP, Maurya JN (2011) Responses of pisum sativum l. To exogenous indole acetic acid application under manganese toxicity. Bull Environ Contam Toxicol 86:605–609. doi:10.1007/s00128-011-0278-z

    Article  CAS  PubMed  Google Scholar 

  • Greco G, Colarieti ML, Toscano G, Iamarino G, Rao MA, Gianfreda L (2006) Mitigation of olive mill wastewater toxicity. J Agric Food Chem 54:6776–6782

    Article  CAS  PubMed  Google Scholar 

  • Hallett PD, Young IM (1999) Changes to water repellence of soil aggregates caused by substrate-induced microbial activity. Eur J Soil Sci 50:35–40

    Article  Google Scholar 

  • Hanifi S, El Hadrami I (2009) Olive mill wastewaters: Diversity of the fatal product in olive oil industry and its valorisation as agronomical amendment of poor soils: A review. J Agron 8:1–13

    Article  CAS  Google Scholar 

  • Hoekstra N, Bosker T, Lantinga E (2002) Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (lepidium sativum l.). Agric Ecosyst Environ 93:189–196

    Article  Google Scholar 

  • Hoorman J, Rafiq I (2010) Understanding soil microbes and nutrient recycling. fact sheet of agriculture and natural. The Ohio State University, Resources

    Google Scholar 

  • Isidori M, Lavorgna M, Nardelli A, Parrella A (2005) Model study on the effect of 15 phenolic olive mill wastewater constituents on seed germination and vibrio fischeri metabolism. J Agric Food Chem 53:8414–8417. doi:10.1021/jf0511695

    Article  CAS  PubMed  Google Scholar 

  • Jonker MTO, Koelmans AA (2002) Extraction of polycyclic aromatic hydrocarbons from soot and sediment: solvent evaluation and implications for sorption mechanism. Environ Sci Technol 36:4107–4113. doi:10.1021/es0103290

    Article  CAS  PubMed  Google Scholar 

  • Kapellakis, IE, Tsagarakis, KP, Crowther, JC (2008) Olive oil history, production and by-product management. Rev. Environ. Sci. Biotechnol. 7:1–26

  • Kavvadias V, Doula M, Theocharopoulos S (2014) Long-term effects on soil of the disposal of olive mill waste waters (omw). Environ Forensic 15:37–51

    Article  Google Scholar 

  • Kelsey JW, Kottler BD, Alexander M (1997) Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ Sci Technol 31:214–217

    Article  CAS  Google Scholar 

  • Khan RA, Khan NA, Ahmed M, Khan MR, Khan FU, Shah AS, Shah MS (2012) Phytotoxic characterization of crude methanolic extract of periploca aphylla. Afr J Biotechnol 11:11575–11579

    Article  Google Scholar 

  • Khatib A, Aqra F, Yaghi N, Subuh Y, Hayeek B, Musa M, Basheer S, Sabbah I (2009) Reducing the environmental impact of olive mill wastewater. Am J Environ Sci 5:1–6

    Article  CAS  Google Scholar 

  • Laor Y, Saadi I, Raviv M, Medina S, Erez-Reifen D, Eizenbergc H (2011) Land spreading of olive mill wastewater in israel: current knowledge, practical experience, and future research needs. Isr J Plant Sci 59:39–51

    Article  Google Scholar 

  • Li H-B, Cheng K-W, Wong C-C, Fan K-W, Chen F, Jiang Y (2007) Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem 102:771–776

    Article  CAS  Google Scholar 

  • Macko SA, Fogel ML, Hare PE, Hoering TC (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol Isot Geosci Sect 65:79–92. doi:10.1016/0168-9622(87)90064-9

    Article  CAS  Google Scholar 

  • Mahmoud M, Janssen M, Haboub N, Nassour A, Lennartz B (2010) The impact of olive mill wastewater application on flow and transport properties in soils. Soil Till Res 107:36–41. doi:10.1016/j.still.2010.01.002

    Article  Google Scholar 

  • Martin JP, Haider K (1986) Influencs of mineral colloids on turnover rates of organic soil carbon. Soil Sci Soc Am Spec Publ 17:283–304

    CAS  Google Scholar 

  • Mekki A, Dhouib A, Sayadi S (2006) Changes in microbial and soil properties following amendment with treated and untreated olive mill wastewater. Microbiol Res 161:93–101

    Article  PubMed  Google Scholar 

  • Montemurro F, Diacono M, Vitti C, Ferri D (2011) Potential use of olive mill wastewater as amendment: crops yield and soil properties assessment. Commun Soil Sci Plant Anal 42:2594–2603. doi:10.1080/00103624.2011.614035

    Article  CAS  Google Scholar 

  • Mussatto SI, Ballesteros LF, Martins S, Teixeira JA (2011) Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep Purif Technol 83:173–179

    Article  Google Scholar 

  • Negi B, Dey G (2009) Comparative analysis of total phenolic content in sea buckthorn wine and other selected fruit wines. World Acad Sci Eng Technol 54:99–102

    Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. Ministry of the Environment, National Environmental Research Institute, Roskilde

    Google Scholar 

  • Oleszczuk P, Malara A, Jośko I, Lesiuk A (2012) The phytotoxicity changes of sewage sludge-amended soils. Water Air Soil Pollut 223:4937–4948. doi:10.1007/s11270-012-1248-8

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piotrowska A, Iamarino G, Rao MA, Gianfreda L (2006) Short-term effects of olive mill waste water (omw) on chemical and biochemical properties of a semiarid mediterranean soil. Soil Biol Biochem 38:600–610

    Article  CAS  Google Scholar 

  • Plante AF, McGill WB (2002) Soil aggregate dynamics and the retention of organic matter in laboratory-incubated soil with differing simulated tillage frequencies. Soil Till Res 66:79–92. doi:10.1016/S0167-1987(02)00015-6

    Article  Google Scholar 

  • Reigosa MJ, Pazos-Malvido E (2007) Phytotoxic effects of 21 plant secondary metabolites on Arabidopsis thaliana germination and root growth. J. Chem. Ecol. 33: 1456–1466

  • Saadi I, Laor Y, Raviv M, Medina S (2007) Land spreading of olive mill wastewater: effects on soil microbial activity and potential phytotoxicity. Chemosphere 66:75–83

    Article  CAS  PubMed  Google Scholar 

  • Santruckova H, Bird M, Lloyd J (2000) Microbial processes and carbon-isotope fractionation in tropical and temperate grassland soils. Funct Ecol 14:108–114

    Article  Google Scholar 

  • Saviozzi A, Levi-Minzi R, Riffaldi R (1990) Cinetica della decomposizione nel terreno del carbonio organico delle acque di vegetazione. Agrochimica 34:157–164

    CAS  Google Scholar 

  • Saviozzi A, Levi-Minz IR, Riffaldi R, Lupetti A (1991) Effetti dello spandimento di acque di vegetazione sul terreno agrario. Agrochimica 35:135–148

    CAS  Google Scholar 

  • Shadabi S, Ghiasvand A, Hashemi P (2013) Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane. Chem Pap 67:730–736. doi:10.2478/s11696-013-0373-1

    Article  CAS  Google Scholar 

  • Sierra J, Marti E, Garau MA, Cruanas R (2007) Effects of the agronomic use of olive oil mill wastewater: field experiment. Sci Total Environ 378:90–94. doi:10.1016/j.scitotenv.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  • Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Article  Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Doube BM, Gupta VVSR (eds) C Pankhurst. CABI Publishing Adelaide, Biological indicators of soil health, pp 97–117

    Google Scholar 

  • Staddon PL (2004) Carbon isotopes in functional soil ecology. Trends Ecol Evol 19:148–154. doi:10.1016/j.tree.2003.12.003

    Article  PubMed  Google Scholar 

  • Tao S, Xu F, Liu W, Cui Y, Coveney RM Jr (2006) A chemical extraction method for mimicking bioavailability of polycyclic aromatic hydrocarbons to wheat grown in soils containing various amounts of organic matter. Environ Sci Technol 40:2219–2224

    Article  CAS  PubMed  Google Scholar 

  • Tarchitzky J, Lerner O, Shani U, Arye G, Lowengart-Aycicegi A, Brener A, Chen Y (2007) Water distribution pattern in treated wastewater irrigated soils: hydrophobicity effect. Eur J Soil Sci 58:573–588. doi:10.1111/j.1365-2389.2006.00845.x

    Article  Google Scholar 

  • Travis MJ, Weisbrod N, Gross A (2008) Accumulation of oil and grease in soils irrigated with greywater and their potential role in soil water repellency. Sci Total Environ 394:68–74. doi:10.1016/j.scitotenv.2008.01.004

    Article  CAS  PubMed  Google Scholar 

  • Vidal RA, Bauman TT (1997) Fate of allelochemicals in the soil. Ciênc Rural 27:351–357

    Article  Google Scholar 

  • Wang TSC, Huang PM, Chou C-H, Chen J-H (1986) The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances. In: PM Huang, M Schnitzer (eds) Interactions of soil minerals with natural organics and microbes. Soil Science Society of America251-281.

  • Werth M, Kuzyakov Y (2010) (13)c fractionation at the root-microorganisms-soil interface: a review and outlook for partitioning studies. Soil Biol Biochem 42:1372–1384. doi:10.1016/j.soilbio.2010.04.009

    Article  CAS  Google Scholar 

  • Wlodarczyk T, Ksiezopolska A, Glinski J (2008) New aspect of soil respiration activity measuring. Teka Kom Ochr Kszt Środ Przyr–OL PAN 5:153–163

    Google Scholar 

  • Zhang C, Fu S (2010) Allelopathic effects of leaf litter and live roots exudates of eucalyptus species on crops. Allelopathy J 26:91–100

    Google Scholar 

Download references

Acknowledgments

This research was conducted within the trilateral project “OLIVEOIL” funded by the DFG (SCHA849/13). The authors thank all members of the researchers group for fruitful discussions. Furthermore, we thank Andreas Hirsch, Silvia Eichhöfer and Eugenia Podolskaja for their help during the measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Schaumann.

Additional information

Responsible Editor: Yong Chao Liang..

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

(pdf 446 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchmann, C., Felten, A., Peikert, B. et al. Development of phytotoxicity and composition of a soil treated with olive mill wastewater (OMW): an incubation study. Plant Soil 386, 99–112 (2015). https://doi.org/10.1007/s11104-014-2241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2241-3

Keyword

Navigation