Skip to main content

Advertisement

Log in

Infection with foliar pathogenic fungi does not alter the receptivity of Norway spruce seedlings to ectomycorrhizal fungi

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We studied whether the induction of defence against foliar pathogens affects the interaction of Norway spruce (Picea abies) with ectomycorrhizal fungi (EMF) and whether the response differs between seedlings originating from families showing variable growth performance in long-term trials.

Methods

The shoots were inoculated with Botrytis cinerea and Gibberella avenacea. The roots were simultaneously inoculated with sieved humus to provide the EMF inoculum. The severity of the pathogenic infection was based on the amount of damage and induced production of condensed tannins in the needles.

Results

EMF richness and colonisation were not affected by the pathogens and were also identical between the fast- and slow-growing seedlings. The fast-growing seedlings were more vulnerable to the pathogens; however, the constitutive level of condensed tannins in the needles did not correlate with their susceptibility to either the pathogenic or symbiotic fungi. G. avenacea induced a marginally greater production of condensed tannins in the slow-growing seedlings, which was linked to a slight reduction in EMF richness and less needle damage after wintering.

Conclusions

Our results suggest that there are differences in resource allocation strategies between the fast- and slow-growing spruce families, which may indicate the presence of underlying host effects that regulate interactions with associated fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adomas A, Heller G, Olson Å, Osborne J, Karlsson M, Nahalikova J, Zyl LV, Sederoff R, Stenlind J, Finlay R, Asiegbu FA (2008) Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic, or mutualistic fungus. Tree Physiol 28:885–897

    Article  PubMed  CAS  Google Scholar 

  • Andersson IC, Campbell CD, Prosser JI (2003) Diversity of fungi in organic soils under a moorland—Scots pine (Pinus sylvestris L.) gradient. Environ Microbiol 5:1121–1132

    Article  Google Scholar 

  • Avis PG, Branco S, Tang Y, Mueller GM (2010) Pooled samples bias fungal community descriptions. Mol Ecol Resour 10(135):141

    Google Scholar 

  • Bailey JK, Deckert R, Schweitzer JA, Rehill BJ, Lindroth RL, Gehring C, Witham TG (2005) Host plant genetics affect hidden ecological players: links among Populus, condensed tannins, and fungal endophyte infection. Can J Bot 83:356–361

    Article  Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98:745–753

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) Linear mixed-effects models using Eigen and S4. Version 1.0-5 http://cran.r-project.org/web/packages/lme4/lme4.pdf. Accessed 2 Dec 2013

  • Beckers GJM, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    Article  PubMed  Google Scholar 

  • Blodgett JT, Eyles A, Bonello P (2007) Organ-dependent induction of systemic resistance and systemic susceptibility in Pinus nigra inoculated with Sphaeropsis sapinea and Diploidia scrobiculata. Tree Physiol 27:511–517

    Article  PubMed  Google Scholar 

  • Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20:25–38

    Article  PubMed  Google Scholar 

  • Bonello P, Gordon TR, Herms DA, Wood DL, Erbilgin N (2006) Nature and ecological implications of pathogen-induced systemic resistance in conifers: a novel hypothesis. Physiol Mol Plant Pathol 68:95–104

    Article  CAS  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Brignolas F, Lacroix B, Lieutier F, Saucars D, Drouet A, Claudot A-C, Yart A, Berryman AA, Christiansen E (1995) Induced responces in phenolic metabolism in two Norway spruce clones after wounding and inoculation with Ophiostoma polonicum, a bark beetle-associated fungus. Plant Physiol 109:821–827

    PubMed Central  PubMed  CAS  Google Scholar 

  • Christiansen E, Krokene P, Berryman AA, Franceschi VR, Krekling T, Lieutier F, Lönneborg A, Solheim H (1999) Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiol 19:399–403

    Article  PubMed  Google Scholar 

  • de Román M, Fernández I, Wyatt T, Sahrawy M, Heil M, Pozo MJ (2011) Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J Ecol 99:36–45

    Article  CAS  Google Scholar 

  • Evensen PC, Solheim H, Høiland K, Stenersen J (2000) Induced resistance of Norway spruce, variation of phenolic compounds and their effects on fungal pathogens. For Pathol 30:97–108

    Article  Google Scholar 

  • Eyles A, Bonello P, Ganley R, Mohammed C (2010) Induced resistance to pests and pathogens in trees. New Phytol 185:893–908

    Article  PubMed  Google Scholar 

  • Fisher DG, Hart SC, Rehill BJ, Lindroth RL, Keim P, Whitham TG (2006) Do high-tannin leaves require more roots? Oecologia 149:668–675

    Article  Google Scholar 

  • Fossdal CG, Nagy NE, Hietala AM, Kvaalen H, Slimestad R, Woodward S, Solheim H (2012a) Indications if heightened constitutive or primed host response affecting the lignin pathway transcripts and phenolics in mature Norway spruce clones. Tree Physiol 32:1137–1147

    Article  PubMed  CAS  Google Scholar 

  • Fossdal CG, Yaqoob N, Krokene P, Solheim H, Yakolev A (2012b) Local and systemic changes in expression of resistance genes, nb-lrr genes and their putative microRNAs in Norway spruce after wounding and inoculation with the pathogen Ceratocystis polonica. BMC Plant Biol 12:105–115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fox J, Weisberg S (2011) Companion to Applied Regression 2nd edition, Sage, Thousand Oaks, CA, http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

  • Gardes M, Burns TD (1993) ITS primers with enchanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Hansen EM, Hamm PB (1988) Canker diseases of Douglas-fir seedlings in Oregon and Washington bareroot nurseries. Can J Forest Res 35:432–439

    Google Scholar 

  • Hébert C, Charles MT, Gauthier L, Willemot C, Khanizadeh S, Cousineau J (2002) Strawberry proanthocyanidins: biochemical markers for Botrytis cinerea resistance and shelf-life predictability. ISHS Acta horticulare 567: IV International Strawberry Symposium

  • Heil M, Baldwin IT (2002) Fitness cost of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67

    Article  PubMed  CAS  Google Scholar 

  • Heller G, Adomas A, Li G, Osborne J, van Zyl L, Sederoff R, Finlay RD, Stenlid J, Asiegbu FO (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biol 8:19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000) Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems 3:57–69

    Article  CAS  Google Scholar 

  • Henery ML, Wallis IR, Stone C, Foley WJ (2008) Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defences on larvae of specialist herbivore. Oecologia 156:847–859

    Article  PubMed  CAS  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • Iriti M, Rossoni M, Borgo M, Ferrara L, Faoro F (2005) Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: primary versus secondary metabolism. J Agric Food Chem 53:9133–9139

    Article  PubMed  CAS  Google Scholar 

  • Kanerva S, Smolander A (2008) How do coniferous needle tannins influence C and N transformations in birch humus layer? Eur J Soil Biol 44:1–9

    Article  CAS  Google Scholar 

  • Kanerva S, Kitunen V, Kiikkilä O, Loponen J, Smolander A (2006) Response of soil C and N transformations to tannin fractions originating from Scots pine and Norway spruce needles. Soil Biol Biochem 38:1364–1374

    Article  CAS  Google Scholar 

  • Korkama T, Pakkanen A, Pennanen T (2006) Ectomycorrhizal community structure varies among Norway spruce (Picea abies) clones. New Phytol 171:815–824

    Article  PubMed  CAS  Google Scholar 

  • Korkama-Rajala T, Müller M, Pennanen T (2008) Decomposition and fungi of needle litter from slow- and fast-growing Norway spruce (Picea abies) clones. Microb Ecol 56:76–89

    Article  PubMed  Google Scholar 

  • Kosola KR, Parry D, Workmaster BAA (2006) Responces to condensed tannins in poplar roots to fertilization and gypsy moth defoliation. Tree Physiol 26:1607–1611

    Article  PubMed  CAS  Google Scholar 

  • Kraus TEC, Dahlgren RA, Zasoski RJ (2003) Tannins in nutrient dynamics of forest ecosystems—a review. Plant Soil 256:41–66

    Article  CAS  Google Scholar 

  • Krokene P, Solheim H, Christiansen E (2001) Induction of disease resistance in Norway spruce (Picea abies) by necrotizing fungi. Plant Pathol 50:230–233

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2012) Tests for random and fixed effects for linear mixed effects models (lmer objects of lme4 package). Version 2.0-3 http://cran.r-project.org/web/packages/lmerTest/lmerTest.pdf. Accessed 12 Dec 2013

  • Lamhamedi MS, Chamberland H, Bernier PY, Tremblay FM (2000) Clonal variation in morphology, growth, physiology, anatomy and ultrastructure of container-grown white spruce somatic plants. Tree Physiol 20:869–880

    Article  PubMed  CAS  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  PubMed  CAS  Google Scholar 

  • Likar M, Regvar M (2008) Early defence reactions in Norway spruce seedlings inoculated with the mycorrhizal fungus Pisolitus tinctorus (Persoon) Coker & Couch and the pathogen Heterobasidion annosum (Fr.) Bref. Trees 22:861–868

    Article  Google Scholar 

  • Lilja A, Lilja S, Poteri M, Ziren L (1992) Conifer seedling root fungi and root dieback in Finnish nurseries. Scand J For Res 7:547–556

    Article  Google Scholar 

  • Mack KML, Rudgers JA (2008) Balancing multiple mutualists: asymmetric interactions among plants, arbuscular mycorrhizal fungi, and fungal endophytes. Oikos 117:310–320

    Article  Google Scholar 

  • Mansfield JL, Curtis PS, Zak DR, Pregitzer KS (1999) Genotypic variation for condensed tannin production in trembling aspen (Populus tremuloides, salicaceae) under elevated CO2 and in high- and low-fertility soil. Am J Bot 86:1154–1159

    Article  PubMed  CAS  Google Scholar 

  • Mattson WJ, Lawrence RK, Haack RA, Herms DA, Charles PJ (1988) Defensive strategies of woody plants against different insect-feeding guildsin relation to plant ecological strategies and intimacy of association with insects. In: Mechanisms of woody plant defences against insects: search for pattern. Springer, New York, pp 3–38

    Chapter  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturating gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nadelhoffer KJ, Aber JD, Melillo JM (1985) Fine roots, Net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66:1377–1390

    Article  Google Scholar 

  • Nagy NE, Fosdahl CG (2013) Host responses in Norway spruce roots induced to the pathogen Ceratocystis polonica are evaded or suppressed by the ectomycorrhizal fungus Laccaria bicolor. Plant Biol 15:99–110

    Article  PubMed  CAS  Google Scholar 

  • Nagy NE, Fossdahl CG, Krokene P, Kreckling T, Lönneborg A, Solheim H (2004) Induced responces to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells, chalcone synthase transcript levels and peroxidase activity. Tree Physiol 24:505–515

    Article  PubMed  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagneret H (2013) Community ecology package. Version 2.0-10 http://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed 16 Dec 2013

  • Petäistö RL (2006) Botrytis cinerea and Norway spruce seedlings in cold storage. Balt For 12:24–33

    Google Scholar 

  • Petäistö RL (2012) Effects of light and winter storage conditions on Norway spruce seedlings with special emphasis on the occurance of Gibberella avenacea. Balt For 18:73–82

    Google Scholar 

  • Petäistö RL, Kurkela T (1993) The susceptibility of Scots pine seedlings to Gremmeniella abietina: effect of growth phase, cold and drought stress. Eur J Forest Pathol 23:385–399

    Article  Google Scholar 

  • Petäistö RL, Heiskanen J, Pulkkinen A (2004) Susceptibility of Norway spruce seedlings to grey mould in the greenhouse during the first growing season. Scand J For Res 19:30–37

    Article  Google Scholar 

  • Pfabel C, Eckhardt KU, Baum C, Struck C, Frey P, Weih M (2012) Impact of ectomycorrhizal colonization and rust infection on the secondary metabolism of poplar (Populurs trichocarpa x deltoides). Tree Physiol 32:1357–1364

    Article  PubMed  CAS  Google Scholar 

  • R Development Core team (2013) R: a language and environment for statistical computing. R foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rajala T, Velmala SM, Tuomivirta T, Haapanen M, Müller M, Pennanen T (2013) Endophyte communities vary in needles of Norway spruce clones. Fungal Biol 117:182–190

    Article  PubMed  Google Scholar 

  • Rajala T, Velmala SM, Smolander A, Pennanen T (2014) The community of needle endophytes reflects the current physiological state of Norway spruce. Fungal Biol 118:309–315

    Article  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  PubMed  CAS  Google Scholar 

  • Rook F, Bevan MW (2003) Genetic approaches to understanding sugar-response pathways. J Exp Bot 54:495–501

    Article  PubMed  CAS  Google Scholar 

  • Rosling A, Cox F, Cruz-Martinez K, Ihrmark K, Grelet GA, Lindahl BD, Menkis A, James TY (2011) Archaeorhizomycetes—a class of ancient, widespread soil fungi. Science 333:876–879

    Article  PubMed  CAS  Google Scholar 

  • Sampangi R, Perrin R, Le-Tacon F (1986) Disease suppression and growth promotion of Norway spruce and Douglas-fir seedlings by the ectomycorrhizal Laccaria laccarata in forest nurseries. In: Mycorrhizae: physiology and genetics, Ed. Gianinazzi-Pearson V and Gianinazzi S, 1st ESM, Dijon, 1–5 July 1985, INRA, Paris, 799–806

  • Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biometrics Bull 2:110–114

    Article  CAS  Google Scholar 

  • Schultz JC, Appel HM, Ferrieri AP, Arnold TM (2013) Flexible resource allocation during plant defense. Front Plant Sci 4:324

    Article  PubMed Central  PubMed  Google Scholar 

  • Schweitzer JA, Madritch MD, Bailey JK, LeRoy CJ, Fischer DG, Rehill BJ, Lindroth RL, Haregman AE, Wooley SC, Hart SC, Whitham TG (2008) From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model system. Ecosystems 11:1005–1020

    Article  CAS  Google Scholar 

  • Soukupová J, Cvikrova C, Albrechtová J, Rock BN, Eder J (2000) Histochemical and biochemical approaches to the study of phenolic compounds and peroxidises in needles of Norway spruce (Picea abies). New Phytol 146:403–414

    Article  Google Scholar 

  • Sthultz CM, Whitham TG, Kennedy K, Deckert R, Gehing CA (2009) Genetically based susceptibility to herbivory influences the ectomycorrhizal fungal communities of a foundation tree species. New Phytol 184:657–667

    Article  PubMed  CAS  Google Scholar 

  • Swedjemark G, Karlsson B, Stenlid J (2007) Exclusion of Heterobasidion parviporum from inoculated clones of Picea abies and evidence of systemic induced resistance. Scand J For Res 22:110–117

    Article  Google Scholar 

  • Thomas JC, Smigocki AC, Bohnert HJ (1995) Light-induced expression of ipt from Agrobacterium tumefaciens results in cytokinin accumulation and osmotic-stress symptoms. Plant Mol Biol 27:225–235

    Article  PubMed  CAS  Google Scholar 

  • van Dam NM, Heil M (2011) Multitrophic interactions below and above ground: en route to the next level. J Ecol 99:77–88

    Article  Google Scholar 

  • Velmala SM, Rajala T, Heinonsalo J, Taylor AFS, Pennanen T (2014) Profiling functions of ectomycorrhizal diversity and root structuring in fast- and slow-growing Norway spruce seedlings. New Phytol 201:610–622

    Article  CAS  Google Scholar 

  • Wagner MR (1988) Induced defenses in ponderosa pine against defoliating insects. In: Mattson WJ, Levieux J, Bernard-Dagan C (eds) Mechanisms of woody plant defenses against insects. Springer, New York, pp 141–155

  • Waterman PG, Mole S (1994) Analysis of phenolic plant metabolites. Blackwell Scientific Publications, Oxford.

  • White TJ, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gefland DH, Sninsky JJ, White TJ (eds) PCR protocols guide to methods and amplifications. Academic, San Diego, pp 315–322

    Chapter  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Winder RS (1999) The influence of substrate and temperature on the sporulation of Fusarium avenaceum and its virulence on marsh reed grass. Mycol Res 103:1145–1151

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Academy of Finland (project 128229) and Otto A. Malm foundation. We are grateful to the staff of the Suonenjoki nursery, M-L Napola, M-L Jalkanen, R Kattainen, M Oksanen, A Rautiainen, H Ruhanen, S Ullah, and R Vesala.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Velmala.

Additional information

Responsible Editor: Angela Hodge..

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velmala, S.M., Rajala, T., Smolander, A. et al. Infection with foliar pathogenic fungi does not alter the receptivity of Norway spruce seedlings to ectomycorrhizal fungi. Plant Soil 385, 329–342 (2014). https://doi.org/10.1007/s11104-014-2238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2238-y

Keywords

Navigation