Skip to main content
Log in

Capacity of biological soil crusts colonized by the lichen Diploschistes to metabolize simple phenols

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

In biological soil crusts (biocrusts) in which Diploschistes diacapsis (Ach.) Lumbsch is the predominant lichen (DIPLOS biocrusts), metabolic activity increases in response to wetting, and hot water-soluble components that react to Folin-Ciocalteu reagent are consumed during the mineralization process. We aimed to determine the types of compounds that contribute to the high rates of respiration.

Methods

Aliquots of aqueous extracts (80 °C, 24 h) obtained from DIPLOS biocrusts incubated for 10 days in the dark, at 25 °C and at different levels of moisture (M1, 9.6 %; M2, 26 %; M3, 52 % and M4, 78 %, expressed as the percentage of water retained at field capacity), were analyzed by HPLC and LC/ESI/MS/MS.

Results

The intensity of the peaks in HPLC chromatograms decreased as the moisture level increased, and LC/ESI/MS/MS analysis revealed that the compounds are mainly diphenols (or very small polymers of these) and products derived from these via the metapathway of phenol metabolism. A mycosporine-like product, which is stable at low moisture levels, but metabolized at high moisture levels, was also detected.

Conclusions

DIPLOS biocrusts display high oxidative enzymatic activity that is capable of degrading phenols and that is probably associated with non-lichenized free living fungi proliferating at high moisture levels. The high rates of respiration associated with high humidity, together with the metabolism of compounds like mycosporines (with key functions in providing protection against UV radiation), may lead to structural collapse of the biocrusts under such conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander RW, Harvey AM, Calvo A, James PA, Cerdá A (1994) Natural stabilisation mechanisms on badland slopes: Tabernas, Almeria, Spain. In: Millington AC, Pye K (eds) Environmental change in drylands: biogeographical and geomorphological perspectives. Wiley, Chichester, pp 85–111

    Google Scholar 

  • Baldrian P (2008) Enzymes of saprotrophic basidiomycetes. Br Mycol Soc Symp Ser 28:19–41

    Article  Google Scholar 

  • Bates ST, Garcia-Pichel F (2009) A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau. Their diversity and relative contribution to microbial biomass. Environ Microbiol 11:56–67

    Article  CAS  PubMed  Google Scholar 

  • Beckett RP, Minibayeva FV, Liers C (2012a) Occurrence of high tyrosinase activity in the non-Peltigeralean lichen Dermatocarpon miniatum (L) W. Mann. Lichenologist 44:827–832

    Article  Google Scholar 

  • Beckett RP, Minibayeva FV, Liers C (2012b) On the occurrence of the peroxidase and laccase activity in lichens. Lichenologist 45:277–283

    Article  Google Scholar 

  • Beckett RP, Zavardina AG, Liers C (2013) Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover. Fungal Biol 117:431–438

    Article  CAS  PubMed  Google Scholar 

  • Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure. Function and Management. Springer-Verlag, New York, pp 241–261

    Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crust from southeast Utah, USA. Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178

    Article  CAS  Google Scholar 

  • Belnap J, Lange OL (2001) Structure and functioning of biological soil crusts: a synthesis. In: Belnap J, Lange OL (eds) Biological soil crusts: structure. Function and Management. Springer-Verlag, New York, pp 471–479

    Google Scholar 

  • Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure. Function and Management. Springer-Verlag, New York, pp 3–30

    Google Scholar 

  • Bowker MA, Maestre FT, Escolar C (2010) Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol Biochem 42:405–417

    Article  CAS  Google Scholar 

  • Cantón Y, Domingo F, Solé-Benet A, Puigdefábregas J (2001) Hydrological and erosion response of a badlands system in semiarid SE Spain. J Hydrol 252:65–84

    Article  Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A (2010) Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant Soil 333:21–34

    Article  CAS  Google Scholar 

  • Ceccanti B, Masciandaro G, García C (1993) Anaerobic digestion of straw and piggery waste water: I. Preliminary studies. Agrochimica 37:147–156

    CAS  Google Scholar 

  • Coe KK, Belnap J, Sparks JP (2012) Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology 93:1626–1636

    Article  PubMed  Google Scholar 

  • Collins SL, Sinsabaugh RL, Creenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in arid land ecosystems. J Ecol 96:413–420

    Article  Google Scholar 

  • Conant RT, Dalla-Betta P, Klopatek CC, Klopatek JM (2004) Controls on soil respiration in semiarid soils. Soil Biol Biochem 36:945–951

    Article  CAS  Google Scholar 

  • Crenshaw C, Lauber CL, Sinsabaugh RL, Stavely LK (2008) Fungal dominance of nitrogen transformations in semiarid grassland. Biogeochemistry 87:17–27

    Article  CAS  Google Scholar 

  • Culberson CF, Culberson WL, Johnson A (1977) Second supplement to “Chemical and botanical guide to lichen products”. Am Bryol Lichenol Soc - Missouri Botanical Garden, St. Louis

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138

    Article  CAS  Google Scholar 

  • Grote EE, Belnap J, Housman DC, Sparks JEDP (2010) Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol 16:2763–2774

    Article  Google Scholar 

  • Guitián F, Carballas T (1976) Técnicas de análisis de suelos. Ed. Pico Sacro, Santiago de Compostela

    Google Scholar 

  • Harborne JB (1964) Ultraviolet spectroscopy of polyphenols. In: Pridham JB (ed) Methods in polyphenol chemistry. Proc Plant Phenolics Group Symp. Pergamon Press, Oxford, p 45–60

  • Hu S, Coleman DC, Carroll CR, Hendrix PF, Beare MH (1997) Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types. Agric Ecosyst Environ 65:69–78

    Article  CAS  Google Scholar 

  • Huang Z, Xu Z, Chen C (2008) Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia. Appl Soil Ecol 40:229–239

    Article  Google Scholar 

  • Indu Nair C, Jayachandran K, Shashidhar S (2008) Biodegradation of phenol. Afr J Biotechnol 7:4951–4958

    Google Scholar 

  • ISSS Working Group WRB (1998) World reference base for soil resources: introduction. ISSS, ISRIC, FAO, Acco, Leuven

    Google Scholar 

  • Kuwatsova S, Shindo H (1973) Behaviour of phenolic substances in the decaying process of plant. Identification and quantitative determination of phenolic acids in rice straw and its decayed products by gas cromatography. Soil Sci Plant Nutr 19:219–227

    Article  Google Scholar 

  • Landgraf D, Wedig S, Klose S (2005) Medium- and short-term available organic matter, microbial biomass, and enzyme activities in soils under Pinus sylvestris L. and Robinia pseudoacacia L. in a sandy soil in NE Saxony, Germany. J Plant Nutr Soil Sci 168:193–201

    Article  CAS  Google Scholar 

  • Lázaro R, Cantón Y, Solé-Benet A, Bevan J, Alexander R, Sancho LG, Puigdefábregas J (2008) The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands (SE Spain) and its landscape effects. Geomorphology 102:252–266

    Article  Google Scholar 

  • Leinweber P, Schulten HR, Körschens M (1995) Hot water extracted organic matter: chemical composition and temporal variations in a long-term field experiment. Biol Fertil Soils 20:17–23

    Article  CAS  Google Scholar 

  • Libkind D, Moliné M, Sommaruga R, Sampaio JP, van Brook M (2011) Phylogenetic distribution of fungal mycosporines within the Pucciniomycotina (Basidiomycota). Yeast 28:619–627

    Article  CAS  PubMed  Google Scholar 

  • Lumbsch HT, Elix JA (1989) Taxonomy of some Diploschistes spp. (lichenized ascomycetes, Thelotremataceae) containing gyrophoric acid. Plant Syst Evol 167:195–199

    Article  Google Scholar 

  • Maestre FT, Bowker MA, Cantón Y, Castillo-Monroy AP, Cortina J, Escolar C, Escudero A, Lázaro R, Martínez I (2011) Ecology and functional roles of biological soil crust in semi-arid ecosystems of Spain. J Arid Environ 75:1282–1291

    Article  Google Scholar 

  • Mager DM (2010) Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari, Botswana. Soil Biol Biochem 42:313–318

    Article  CAS  Google Scholar 

  • Mager DM, Thomas AD (2011) Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ 75:91–97

    Article  Google Scholar 

  • Miralles I, Domingo F, Cantón Y, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012a) Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones. Soil Biol Biochem 53:124–132

    Article  CAS  Google Scholar 

  • Miralles I, Domingo F, García-Campos E, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012b) Biological and microbial activity in biological soil crusts from the Tabernas desert, a sub-arid zone in SE Spain. Soil Biol Biochem 55:113–121

    Article  CAS  Google Scholar 

  • Miralles I, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2013) Labile carbon in biological soil crusts in the Tabernas desert, SE Spain. Soil Biol Biochem 58:1–8

    Article  CAS  Google Scholar 

  • Oren A, Gunde-Cimerman N (2007) Mycosporines and mycosporines-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 269:1–10

    Article  CAS  PubMed  Google Scholar 

  • Portwich A, Garcia-Pichel F (1999) Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC 6912. Arch Microbiol 172:187–192

    Article  CAS  PubMed  Google Scholar 

  • Roullier C et al (2011) Characterization and identification of mycosporines-like compounds in cyanolichens: isolation of mycosporine hydroxyglutamicol from Nephroma laevigatum Ach. Phytochemistry 72:1348–1357

    Article  CAS  PubMed  Google Scholar 

  • Rovira P, Vallejo VR (2002) Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107:109–141

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Sinha RP, Singh SP, Häder D-P (2007) Database on mycosporines and mycosporines-like amino acids (MAAS) in fungi, cyanobacteria, macroalgae, hytoplankton and animals. J Photochem Photobiol B Biol 89:29–35

    Article  CAS  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Sparling GP, Shepherd TG, Kettles HA (1992) Changes in soil organic C, microbial C and aggregate stability under continuous maize and cereal cropping, and after restoration to pasture in soils from the Manawaty region, New Zealand. Soil Tillage Res 24:225–241

    Article  Google Scholar 

  • Stursova M, Sinsabaugh RL (2008) Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation. Soil Biol Biochem 40:550–553

    Article  CAS  Google Scholar 

  • Thomas AD, Hoon SR, Dougill AJ (2011) Soil respiration at five sites along the Kalahari Transect: effects of temperature, precipitation pulses and biological soil cover. Geoderma 167–168:284–294

    Article  Google Scholar 

  • Towers GHN (1964) Metabolism of phenolic compounds in higher plants and micro-organisms. In: Harborne JB (ed) Biochemistry of phenolic compounds. Academic, New York, pp 249–294

    Google Scholar 

  • Turner WB, Aldrigde DC (1983) Fungal metabolites II. Academic, London

    Google Scholar 

  • Volkmann M, Whitehead K, Rütters H, Rullkötter J, Gorbushina A (2003) Mycosporine-glutamicol-glucoside: a natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Commun Mass Spectrom 17:897–902

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Spanish Ministerio de Ciencia e Innovación for financial support (Project No. CTM2011-25664, co-financed with FEDER founds from EU). The authors thank Ana I. Iglesias-Tojo and Gonzalo Hermelo for assistance in carrying out the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Trasar-Cepeda.

Additional information

Responsible Editor: Katja Klumpp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miralles, I., Trasar-Cepeda, C., Leirós, M.C. et al. Capacity of biological soil crusts colonized by the lichen Diploschistes to metabolize simple phenols. Plant Soil 385, 229–240 (2014). https://doi.org/10.1007/s11104-014-2220-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2220-8

Keywords

Navigation