Skip to main content

Advertisement

Log in

Effects on nutrient cycling of conifer restoration in a degraded tropical montane forest

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Exotic coniferous species have been used widely in restoration efforts in tropical montane forests due to their tolerance to adverse conditions and rapid growth, with little consideration given to the potential ecological benefits provided by native tree species. The aim of this study was to elucidate differences in litterfall and nutrient flow between a montane oak forest (Quercus humboldtii Bonpl.) and exotic coniferous plantations of pine (Pinus patula Schltdl. & Cham.) and cypress (Cupressus lusitanica Mill.) in the Colombian Andes.

Methods

Litter production, litter decomposition rate, and element composition of leaf litter were monitored during 3 years.

Results

Litter production in the oak forest and pine plantation was similar, but considerably lower in the cypress plantation . Similar patterns were observed for nutrient concentrations in litterfall, with the exception of Ca which was three times higher in the cypress plantation. The annual decay rate of litter was faster in the montane oak forest than in either of the exotic coniferous plantations. The potential and net return of nutrients to the forest floor were significantly higher in oak forest than in the exotic coniferous plantations.

Conclusions

Future restoration programs should consider new species that can emulate the nutrient flow of native broadleaf species instead of exotic species that tend to impoverish soil nutrient stocks in tropical montane forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Acosta-Contreras I (2004) Estudio de tendencias y perspectivas del sector forestal en América Latina. Informe Nacional Colombia. CONIF and FAO, Roma

    Google Scholar 

  • Aldana C (2004) Sector forestal Colombiano. Fuente de vida, trabajo y bienestar. CONIF, Bogota

    Google Scholar 

  • Armenteras D, Rodriguez N, Retana J, Morales M (2011) Understanding deforestation in montane and lowland forests of the Colombian Andes. Reg Environ Chang 11:693–705

    Article  Google Scholar 

  • Bakker MA, Carreño-Rocabado G, Poorter L (2011) Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Funct Ecol 25:473–483

    Article  Google Scholar 

  • Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach A-M, Hérault B, Patiño S, Roggy J-C, Chave J (2010) Decoupled leaf and stem economics in rain forest trees. Ecol Lett 13:1338–1347

    Article  PubMed  Google Scholar 

  • Benner L, Vitousek PM, Ostertag R (2011) Nutrient cycling and nutrient limitation in tropical montane cloud forest. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management (International hydrology series). Cambridge University Press, Cambridge

    Google Scholar 

  • Blandon L (2008) Physical accounts of the forest in the basin of Piedras Blancas, Medellin (Colombia). For Syst 10:167–184

    Google Scholar 

  • Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 9:179–185

    Article  Google Scholar 

  • Boley JD, Drew AP, Andrus RE (2009) Effects of active pasture, teak (Tectona grandis) and mixed native plantations on soil chemistry in Costa Rica. For Ecol Manag 257:2254–2261

    Article  Google Scholar 

  • Celentano D, Zahawi RA, Finegan B, Ostertag R, Cole JC, Holl KD (2011) Litterfall dynamics under different tropical forest restoration strategies in Costa Rica. Biotropica 43:279–287

    Article  Google Scholar 

  • Chave J, Navarrete D, Almeida S, Álvarez E, Aragão LEOC, Bonal D, Châtelet P, Silva-Espejo JE, Goret JY, von Hildebrand P, Jiménez E, Patiño S, Peñuela MC, Phillips OL, Stevenson P, Malhi Y (2010) Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7:43–55

    Article  Google Scholar 

  • Cole RJ, Holl KD, Zahawi RA (2010) Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol Appl 20:1255–1269

    Article  PubMed  CAS  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, Hobbie SE, Hoorens B, Kurokawa H, Pérez-Harguindeguy N, Quested HM, Santiago LS, Wardle DA, Wright IJ, Aerts R, Allison SD, Van-Bodegom P, Brovkin V, Chatain A, Callaghan TV, Díaz S, Garnier E, Gurvich DE, Kazakou E, Klein JA, Read J, Reich PB, Soudzilovskaia NA, Vaieretti MV, Westoby M (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071

    Article  PubMed  Google Scholar 

  • Cuevas E, Lugo A (1998) Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. For Ecol Manag 112:263–279

    Article  Google Scholar 

  • Currie WS, Harmon ME, Burke IC, Hart SC, Parton WJ, Silver W (2009) Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Glob Chang Biol 16:1744–1761

    Article  Google Scholar 

  • DANE (2004) Síntesis censo de plantaciones forestales del Departamento de Antioquia. DANE, Bogota

    Google Scholar 

  • Davidson EA, Howarth RW (2007) Nutrients in synergy. Nature 449:1000–1001

    Article  PubMed  CAS  Google Scholar 

  • Edwards PJ (1982) Studies of mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in throughfall and litter fall. J Ecol 70:807–827

    Article  CAS  Google Scholar 

  • Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York

    Book  Google Scholar 

  • Etter A, McAlpine C, Wilson K, Phinn S, Possingham H (2006) Regional patterns of agricultural land use and deforestation in Colombia. Agric Ecosyst Environ 114:369–386

    Article  Google Scholar 

  • Evans J, Turnbull J (2004) Plantation forestry in the tropics. Oxford University Press, New York

    Google Scholar 

  • Fassbender HW, Grimm V (1981) Ciclos biogeoquímicos en un ecosistema forestal de los Andes Occidentales de Venezuela. II. Producción y descomposición de los residuos vegetales. Turrialba 31:39–47

    CAS  Google Scholar 

  • Fisher RF (1995) Amelioration of degraded rain forest soils by plantations of native trees. Soil Sci Soc Am J 59:544–549

    Article  CAS  Google Scholar 

  • Fisher J, Malhi Y, Torres I, Metcalfe D, Weg M, Meir P, Silva-Espejo J, Huasco W (2012) Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172:889–902. doi:10.1007/s00442-012-2522-6

    Article  PubMed  Google Scholar 

  • Freschet GT, Aerts R, Cornelissen JHC (2012) Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J Ecol 100:619–630

    Article  Google Scholar 

  • Galindo R, Betancur J, Cadena J (2003) Estructura y composición florística de cuatro bosques andinos del santuario de flora y fauna Guanentá-Alto río Fonce, Cordillera Oriental Colombiana. Caldasia 25:313–335

    Google Scholar 

  • Gradstein SR, Homeier J, Gansert D (2008) The tropical mountain forest—patterns and processes in a biodiversity hotspot. Göttingen Centre for Biodiversity and Ecology, Göttingen

    Google Scholar 

  • Haase R (1999) Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For Ecol Manag 117:129–147

    Article  Google Scholar 

  • Herbohn JL, Congdon RA (1998) Ecosystem dynamics at disturbed and undisturbed sites in north Queensland wet tropical rain forest. II. Nutrient returns to the forest floor through litter fall. J Trop Ecol 14:217–229

    Article  Google Scholar 

  • ITTO (2009) Encouraging industrial forest plantations in the tropics: report of a global study. ITTO Technical Series No. 33, Yokohama, Japan

  • Jenny H, Gessel SP, Bingham FT (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci 68:419–432

    Article  CAS  Google Scholar 

  • Jordan CF (1985) Nutrient cycling in tropical forest ecosystems. Wiley, Chichester, 190 pp

    Google Scholar 

  • León JD, Vélez G, Yepes AP (2009) Estructura y composición florística de tres robledales en la región norte de la cordillera central de Colombia. Rev Biol Trop 57:1165–1182

    PubMed  Google Scholar 

  • Lisanework N, Michelsen A (1994) Litterfall and nutrient release by decomposition in three plantations compared with a natural forest in the Ethiopian highland. For Ecol Manag 65:149–164

    Article  Google Scholar 

  • Loaiza-Usuga JC, León-Peláez JD, Ramirez JA, González-Hernández MI, Gallardo-Lancho JF, Osorio-Vega W, Correa-Londoño G (2013) Alterations in litter decomposition patterns in tropical montane forests of Colombia: a comparison of oak forests and coniferous plantations. Can J For Res 43:528–533

    Article  CAS  Google Scholar 

  • Lundgren B (1978) Soil conditions and nutrient cycling under natural and plantation forests in Tanzanian Highlands. Reports in Forest Ecology and Forest Soils 31. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Makkonen M, Berg MP, Handa T, Hättenschwiler S, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041

    Article  PubMed  Google Scholar 

  • McDonald M, Healey J (2000) Nutrient cycling in secondary forest in the Blue Mountains of Jamaica. For Ecol Manag 139:257–278

    Article  Google Scholar 

  • Medina E, Cuevas E (1989) Patterns of nutrient accumulation and release in Amazonian forests of the upper Río Negro basin. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Medina E, Cuevas E, Weaver PL (1981) Composición foliar y transpiración de especies leñosas del Pico del Este, Sierra de Luquillo, Puerto Rico. Acta Cient Venez 32:159–165

    CAS  Google Scholar 

  • Montagnini F (2005) Selecting tree species for plantation. In: Mansourian S, Vallauri D, Dudley N (eds) Forest restoration in landscapes: beyond planting trees. Springer, New York

    Google Scholar 

  • Motta-Tello MT, Candelo-Cardenas R (2003) El complejo forestal Colombiano. In: Bercovich N, Kats J (eds) El desarrollo de complejos forestales en América Latina. CEPAL and ALFAOMEGA COLOMBIANA S.A., Bogota

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nanzyo M, Dahlgren R, Shoji S (1993) Chemical characteristics of volcanic ash soils. In: Shoji S, Nanzyo M, Dahlgren R (eds) Volcanic ash soils. Elsevier, The Netherlands

    Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Olson DM, Dinerstein E (1998) The Global 200: a representation approach to conserving the earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515

    Article  Google Scholar 

  • Pandey RR, Sharma G, Tripathi SK, Singh AK (2007) Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. For Ecol Manag 240:96–104

    Article  Google Scholar 

  • Priess J, Then C, Folster H (1999) Litter and fine-root production in three types of tropical premontane rain forest in SE Venezuela. Plant Ecol 143:171–187

    Article  Google Scholar 

  • Proctor J (1983) Tropical forest litterfall. I. Problems of litter comparison. In: Sutton SL, Whitmore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell, Oxford

    Google Scholar 

  • Proctor J, Phillips C, Duff GK, Heaney A, Robertson FM (1989) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia. Some forest processes. J Ecol 77:317–331

    Article  CAS  Google Scholar 

  • Reich PB, Wright IJ, Lusk CH (2007) Predicting leaf functional traits from simple plant and climate attributers using the GLOPNET global data set. Ecol Appl 17:1982–1988

    Article  PubMed  Google Scholar 

  • Stadtmuller T (1987) Cloud forests in the humid tropics: a bibliographic review. Centro Agronomico Tropical de Investigacion y Ensenanza, Turrialba

    Google Scholar 

  • Sundarapandian SM, Swamy PS (1999) Litter production and leaf-litter decomposition of selected tree species in a tropical forest at Kodayar in the western Ghats, India. For Ecol Manag 123:231–244

    Article  Google Scholar 

  • Tanner PM, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation of forest growth on wet tropical mountains. Ecology 79:10–22

    Article  Google Scholar 

  • Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70:97–104

    Article  Google Scholar 

  • Tschinkel H (1972) Factores limitantes del crecimiento de plantaciones de Cupressus lusitanica en Antioquia, Colombia. Rev Fac Nac Agron 27:3–55

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Veneklaas EJ (1991) Litterfall and nutrient fluxes in two montane tropical rain forests, Colombia. J Trop Ecol 7:319–336

    Article  Google Scholar 

  • Vera M, Cavelier J, Santamaría J (1999) Reabsorción de nitrógeno y fósforo foliar en árboles de bosques montanos en los Andes Centrales de Colombia. Rev Biol Trop 47:33–43

    Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • Vitousek PM, Gerrish G, Turner DR, Walker LR, Müeller-Dombois D (1995) Litterfall and nutrient cycling in four Hawaiian montane rainforests. J Trop Ecol 11:189–203

    Article  Google Scholar 

  • Wang Q, Wang S, Huang Y (2008) Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. For Ecol Manag 255:1210–1218

    Article  Google Scholar 

  • Xu XN, Hirata E (2002) Forest floor mass and litterfall in Pinus luchuensis plantations with and without broad-leaved trees. For Ecol Manag 157:165–173

    Article  Google Scholar 

  • Yang YS, Guo JF, Chen GS, Xie JS, Cai LP, Lin P (2004) Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China. Ann For Sci 61:465–476

    Article  Google Scholar 

  • Yang YS, Guo JF, Chen GS, Xie JS, Gao R, Li Z, Jin Z (2005) Litter production, seasonal pattern and nutrient return in seven natural forests compared with a plantation in southern China. Forestry 78:403–415

    Article  Google Scholar 

  • Young BE, Young KR, Josse C (2011) Vulnerability of tropical Andean ecosystems to climate change. In: Sebastian RM, Herzog K, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE)

  • Zhang D, Hui D, Luo Y, Zhou G (2008) Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1:85–93

    Article  Google Scholar 

  • Zou X, Zucca CP, Waide RB, McDowell WH (1995) Long-term influence of deforestation on tree species composition and litter dynamics of a tropical rain forest in Puerto Rico. For Ecol Manag 78:147–157

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Ecology and Environmental Conservation Laboratory and the Piedras Blancas Forest Station of the Forest Sciences Department, Universidad Nacional de Colombia, for their financial and technical support. Research was also funded by the research division of the Universidad Nacional de Colombia. We also thank the laboratory of soils from the Universidad de Salamanca, Spain, for its technical support. We are grateful to Empresas Públicas de Medellín for allowing us access to the forests. Finally, we thank Drs. Osvaldo Valeria and W.F.J. Parsons for their comments and help with statistical analysis and language revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Ramírez.

Additional information

Responsible Editor: Zucong Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramírez, J.A., León-Peláez, J.D., Craven, D. et al. Effects on nutrient cycling of conifer restoration in a degraded tropical montane forest. Plant Soil 378, 215–226 (2014). https://doi.org/10.1007/s11104-014-2024-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2024-x

Keywords

Navigation