Skip to main content

Advertisement

Log in

Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Accurate predictions of nutrient acquisition by plant roots and mycorrhizas are critical in modelling plant responses to climate change.

Methods

We conducted a field experiment with the aim to investigate root nutrient uptake in a future climate and studied root production by ingrowth cores, mycorrhizal colonization, and fine root N and P uptake by root assay of Deschampsia flexuosa and Calluna vulgaris.

Results

Net root growth increased under elevated CO2, warming and drought, with additive effects among the factors. Arbuscular mycorrhizal colonization increased in response to elevated CO2, while ericoid mycorrhizal colonization was unchanged. The uptake of N and P was not increased proportionally with root growth after 5 years of treatment.

Conclusions

While aboveground biomass was unchanged, the root growth was increased under elevated CO2. The results suggest that plant production may be limited by N (but not P) when exposed to elevated CO2. The species-specific response to the treatments suggests different sensitivity to global change factors, which could result in changed plant competitive interactions and belowground nutrient pool sizes in response to future climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adair EC, Reich PB, Hobbie SE, Knops JM (2009) Interactive effects of time, CO(2), N, and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. Ecosystems 12:1037–1052

    Article  Google Scholar 

  • Aerts R, Heil GW (1993) Heathlands; patterns and processes in a changing environment. Dordrecht, Kluwer Academic Publishers, Geobotany 20. M.J.A. Werger (ed.) pp 223

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Van der Linden L, Beier C (2011a) Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status. Plant Cell Environ 34:1207–1222

    Article  PubMed  CAS  Google Scholar 

  • Albert KR, Ro-Poulsen H, Mikkelsen TN, Michelsen A, Van der Linden L, Beier C (2011b) Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem. J Exp Bot 62:4253–4266

    Article  PubMed  CAS  Google Scholar 

  • Anderson LJ, Derner JD, Polley HW, Gordon WS, Eissenstat DM, Jackson RB (2010) Root responses along a subambient to elevated CO2 gradient in a C-3-C-4 grassland. Glob Chang Biol 16:454–468

    Article  Google Scholar 

  • Andresen LC, Michelsen A, Jonasson S, Schmidt IK, Mikkelsen TN, Ambus P, Beier C (2010) Plant nutrient mobilization in temperate heathland responds to elevated CO2, temperature and drought. Plant Soil 328:381–396

    Article  CAS  Google Scholar 

  • Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247

    Article  PubMed  CAS  Google Scholar 

  • Bassirirad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  • Bassirirad H, Gutschick VP, Lussenhop J (2001) Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia 126:305–320

    Article  Google Scholar 

  • Beier C (2004) Climate change and ecosystem function - full-scale manipulations of CO(2) and temperature. New Phytol 162:243–245

    Article  Google Scholar 

  • Bielenberg DG, Bassirirad H (2005) Nutrient acquisition of terrestrial plants in a changing climate. In: Bassirirad H (ed) Nutrient acquisition by plants - an ecological perspective. Springer, Berlin, pp 311–330

    Chapter  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Chang Biol 4:43–54

    Article  Google Scholar 

  • Danish Meteorological Institute, 2009, http://www.dmi.dk

  • Dijkstra FA, Blumenthal D, Morgan JA, Pendall E, Carrillo Y, Follett RF (2010) Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. New Phytol 187:426–437

    Article  PubMed  CAS  Google Scholar 

  • Edwards EJ, Benham DG, Marland LA, Fitter AH (2004) Root production is determined by radiation flux in a temperate grassland community. Glob Chang Biol 10:209–227

    Article  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME, Ledford J, Liberloo M, Oren R, Polle A, Pritchard S, Zak DR, Schlesinger WH, Ceulemans R (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Natl Acad Sci U S A 104:14014–14019

    Article  PubMed  CAS  Google Scholar 

  • Fitter AH, Graves JD, Wolfenden J, Self GK, Brown TK, Bogie D, Mansfield TA (1997) Root production and turnover and carbon budgets of two contrasting grasslands under ambient and elevated atmospheric carbon dioxide concentrations. New Phytol 137:247–255

    Article  Google Scholar 

  • Fitter AH, Graves JD, Self GK, Brown TK, Bogie DS, Taylor K (1998) Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia 114:20–30

    Article  Google Scholar 

  • Gavito ME, Bruhn D, Jakobsen I (2002) Phosphorus uptake by arbuscular mycorrhizal hyphae does not increase when the host plant grows under atmospheric CO2 enrichment. New Phytol 154:751–760

    Article  CAS  Google Scholar 

  • Gavito ME, Schweiger P, Jakobsen I (2003) P uptake by arbuscular mycorrhizal hyphae: effect of soil temperature and atmospheric CO2 enrichment. Glob Chang Biol 9:106–116

    Article  Google Scholar 

  • Gifford RM, Barrett DJ, Lutze JL (2000) The effects of elevated [CO2] on the C: N and C: P mass ratios of plant tissues. Plant Soil 224:1–14

    Article  CAS  Google Scholar 

  • Goransson H, Fransson AM, Jonsson-Belyazid U (2007) Do oaks have different strategies for uptake of N, K and P depending on soil depth? Plant Soil 297:119–125

    Article  Google Scholar 

  • Gutschick VP, Pushnik JC (2005) Internal regulation of nutrient uptake by relative growth rate and nutrient-use efficiency. In: Bassirirad H (ed) Nutrient acquisition by plants. An ecological perspective. Springer, Berlin, pp 63–88

    Chapter  Google Scholar 

  • Handa IT, Hagedorn F, Hattenschwiler S (2008) No stimulation in root production in response to 4 years of in situ CO2 enrichment at the Swiss treeline. Funct Ecol 22:348–358

    Article  Google Scholar 

  • Harrison AF, Helliwell DR (1979) Bioassay for comparing phosphorus availability in soils. J Appl Ecol 16:497–505

    Article  CAS  Google Scholar 

  • Harrison AF, Taylor K, Hatton JC, Dighton J, Howard DM (1991) Potential of a root bioassay for determining p-deficiency in high-altitude grassland. J Appl Ecol 28:277–289

    Article  Google Scholar 

  • Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  • Jones HE, Quarmby C, Harrison AF (1991) A root bioassay test for nitrogen deficiency in forest trees. For Ecol Manag 42:267–282

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Kongstad J, Schmidt IK, Riis-Nielsen T, Beier C, Arndal MF, Mikkelsen TN (2012) High resilience in heathland plants to changes in temperature, drought and CO2 in combination: results from the CLIMAITE experiment. Ecosystems 15(2):269–283. doi:10.1007/s10021-011-9508-9

    Article  CAS  Google Scholar 

  • Larsen KS, Andresen LC, Beier C, Jonasson S, Albert KR, Ambus P, Arndal MF, Carter MS, Christensen S, Holmstrup M, Ibrom A, Kongstad J, Van der Linden L, Maraldo K, Michelsen A, Mikkelsen TN, Pilegaard K, Prieme A, Ro-Poulsen H, Schmidt IK, Selsted MB, Stevnbak K (2011) Reduced N cycling in response to elevated CO2, warming, and drought in a Danish heathland: Synthesizing results of the CLIMAITE project after two years of treatments. Glob Chang Biol 17:1884–1899

    Article  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Michelsen A, Graglia E, Schmidt IK, Jonasson S, Sleep D, Quarmby C (1999) Differential responses of grass and a dwarf shrub to long-term changes in soil microbial biomass C, N and P following factorial addition of NPK fertilizer, fungicide and labile carbon to a heath. New Phytol 143:523–538

    Article  Google Scholar 

  • Mikkelsen TN, Beier C, Jonasson S, Holmstrup M, Schmidt IK, Ambus P, Pilegaard K, Michelsen A, Albert K, Andresen LC, Arndal MF, Bruun N, Christensen S, Danbaek S, Gundersen P, Jorgensen P, Linden LG, Kongstad J, Maraldo K, Prieme A, Riis-Nielsen T, Ro-Poulsen H, Stevnbak K, Selsted MB, Sorensen P, Larsen KS, Carter MS, Ibrom A, Martinussen T, Miglietta F, Sverdrup H (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought: the CLIMAITE project. Funct Ecol 22:185–195

    Google Scholar 

  • Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA (2005) Root production and tissue quality in a shortgrass steppe exposed to elevated CO2: using a new ingrowth method. Plant Soil 268:111–122

    Article  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96

    Article  Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Newbery RM, Wolfenden J, Mansfield TA, Harrison AF (1995) Nitrogen, phosphorus and potassium uptake and demand in agrostis-capillaris - the influence of elevated CO2 and nutrient supply. New Phytol 130:565–574

    Article  Google Scholar 

  • Nielsen PL, Andresen LC, Michelsen A, Schmidt IK, Kongstad J (2009) Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants. Appl Soil Ecol 42:279–287

    Article  Google Scholar 

  • Olsrud M, Melillo JM, Christensen TR, Michelsen A, Wallander H, Olsson PA (2004) Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytol 162:459–469

    Article  Google Scholar 

  • Olsrud M, Carlsson BA, Svensson BM, Michelsen A, Melillo JM (2010) Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO(2) and warming in a subarctic birch forest understory. Glob Chang Biol 16:1820–1829

    Article  Google Scholar 

  • Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol 162:447–458

    Article  Google Scholar 

  • Pregitzer KS, King JS (2005) Effects of soil temperature on nutrient uptake. In: Bassirirad H (ed) Nutrient acquisition by plants - an ecological perspective. Springer, Berlin, pp 277–310

    Chapter  Google Scholar 

  • Pregitzer KS, King JA, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147:105–115

    Article  CAS  Google Scholar 

  • Rillig MC, Wright SF, Shaw MR, Field CB (2002) Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97:52–58

    Article  Google Scholar 

  • Rogers HH, Runion GB, Krupa SV (1994) Plant-responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189

    Article  PubMed  CAS  Google Scholar 

  • Rosengren U, Sleep D, Jones HE, Thelin G (2003) Increasing the sensitivity of the N-15 root bioassay technique: suggested procedures. Commun Soil Sci Plant Anal 34:2363–2373

    Article  CAS  Google Scholar 

  • Rouhier H, Read DJ (1998) The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytol 139:367–373

    Article  Google Scholar 

  • Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • SAS Institute Inc (2003) SAS User’s guide. Statistical Analysis System, Cary

    Google Scholar 

  • Schmidt IK, Jonasson S, Shaver GR, Michelsen A, Nordin A (2002) Mineralization and distribution of nutrients in plants and microbes in four arctic ecosystems: responses to warming. Plant Soil 242:93–106

    Article  CAS  Google Scholar 

  • Sindhoj E, Andren O, Katterer T, Marissink M, Pettersson R (2004) Root biomass dynamics in a semi-natural grassland exposed to elevated atmospheric CO2 for five years. Acta Agricult Scand B Soil Plant Sci 54:50–59

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Amsterdam, Elsevier, pp 787

  • Staddon PL, Graves JD, Fitter AH (1998) Effect of enhanced atmospheric CO2 on mycorrhizal colonization by Glomus mosseae in Plantago lanceolata and Trifolium repens. New Phytol 139:571–580

    Article  Google Scholar 

  • Staddon PL, Graves JD, Fitter AH (1999) Effect of enhanced atmospheric CO2 on mycorrhizal colonization and phosphorus inflow in 10 herbaceous species of contrasting growth strategies. Funct Ecol 13:190–199

    Article  Google Scholar 

  • Staddon PL, Thompson K, Jakobsen I, Grime JP, Askew AP, Fitter AH (2003) Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob Chang Biol 9:186–194

    Article  Google Scholar 

  • Staddon PL, Gregersen R, Jakobsen I (2004) The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Glob Chang Biol 10:1909–1921

    Article  Google Scholar 

  • Steinaker DF, Wilson SD (2005) Belowground litter contributions to nitrogen cycling at a northern grassland-forest boundary. Ecology 86:2825–2833

    Article  Google Scholar 

  • Taub DR, Wang XZ (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50:1365–1374

    Article  PubMed  CAS  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11

    Article  PubMed  Google Scholar 

  • VanVuuren MMI, Robinson D, Fitter AH, Chasalow SD, Williamson L, Raven JA (1997) Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytol 135:455–465

    Article  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piche Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Walker JF, Aldrich-Wolfe L, Riffel A, Barbare H, Simpson NB, Trowbridge J, Jumpponen A (2011) Diverse Helotiales associated with the roots of three species of Arctic Ericaceae provide no evidence for host specificity. New Phytol 191:515–527

    Article  PubMed  Google Scholar 

  • White PJ, Hammond JP (2008) Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phophorus interactions. Springer, 51–82

  • Woodin S, Graham B, Killick A, Skiba U, Cresser M (1992) Nutrient limitation of the long-term response of heather [Calluna-Vulgaris (L) Hull] to CO2 enrichment. New Phytol 122:635–642

    Article  CAS  Google Scholar 

  • Zijlstra JD, Van’t Hof P, Baar J, Verkley GJM, Summerbell RC, Paradi I, Braakhekke WG, Berendse F (2005) Diversity of symbiotic root endophytes of the Helotiales in ericaceous plants and the grass, Deschampsia flexuosa. Stud Mycol 53:147–162

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank The CLIMAITE project, funded by the Villum Kann Rasmussen foundation and further supported by Air Liquide Denmark A/S and the participating institutions. The authors wish to thank Poul T. Sørensen, Preben Jørgensen and Svend Danbæk for keeping the CLIMAITE facilities running and constantly ready for field work. Iver Jakobsen is thanked for his help during P uptake studies and data analysis, and students are thanked for their assistance in the Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Arndal.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arndal, M.F., Merrild, M.P., Michelsen, A. et al. Net root growth and nutrient acquisition in response to predicted climate change in two contrasting heathland species. Plant Soil 369, 615–629 (2013). https://doi.org/10.1007/s11104-013-1601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1601-8

Keywords

Navigation