Skip to main content

Advertisement

Log in

The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Several strains of rhizobacteria may be found in the rhizospheric soil, on the root surface or in association with rice plants. These bacteria are able to colonize plant root systems and promote plant growth and crop yield through a variety of mechanisms. The objectives of this study were to isolate, identify, and characterize putative plant growth-promoting rhizobacteria (PGPR) associated with rice cropped in different areas of southern Brazil.

Methods

Bacterial strains were selectively isolated based on their growth on three selective semi-solid nitrogen-free media. Bacteria were identified at the genus level by PCR-RFLP 16S rRNA gene analysis and partial sequencing methodologies. Bacterial isolates were evaluated for their ability to produce indolic compounds and siderophores and to solubilize phosphate. In vitro biological nitrogen fixation and the ability to produce 1-aminocyclopropane-1-carboxylate deaminase were evaluated for each bacterial isolate used in the inoculation experiments.

Results

In total, 336 bacterial strains were isolated representing 31 different bacterial genera. Strains belonging to the genera Agrobacterium, Burkholderia, Enterobacter, and Pseudomonas were the most prominent isolates. Siderophore and indolic compounds producers were widely found among isolates, but 101 isolates were able to solubilize phosphate. Under gnotobiotic conditions, eight isolates were able to stimulate the growth of rice plants. Five of these eight isolates were also field tested in rice plants subjected to different nitrogen fertilization rates.

Conclusions

The results showed that the condition of half-fertilization plus separate inoculation with the isolates AC32 (Herbaspirillum sp.), AG15 (Burkholderia sp.), CA21 (Pseudacidovorax sp.), and UR51 (Azospirillum sp.) achieved rice growth similar to those achieved by full-fertilization without inoculation, thus highlighting the potential of these strains for formulating new bioinoculants for rice crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adesmoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer use efficiency. Appl Microbiol Biotechnol 85:1–12. doi:10.1007/s00253-009-2196

    Article  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. doi:10.1007/s00248-009-9531-y

    Article  PubMed  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2006) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181. doi:10.1016/j.micres.2006.04.001

    Article  PubMed  Google Scholar 

  • Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006. doi:10.1099/00207713-47-4-996

    Article  PubMed  CAS  Google Scholar 

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LMP (2012) Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.). Plant Soil 356:245–264. doi:10.1007/s11104-011-1079-1

    Article  CAS  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67. doi:10.1023/A:1004326910584

    Article  CAS  Google Scholar 

  • Araujo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PAV, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236. doi:10.1139/cjm-47-3-229

    Article  PubMed  CAS  Google Scholar 

  • Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Appl Soil Ecol 39:311–320. doi:10.1016/j.apsoil.2008.01.006

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x

    Article  PubMed  CAS  Google Scholar 

  • Bhromsiri C, Bhromsiri A (2010) Isolation, screening of growth-promoting activities and diversity of Rhizobacteria from Vetiver Grass and Rice plants. Thail J Agric Sci 43:217–230

    Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB, Irbg R, Irbg B (2000) Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Boddey RM (1987) Methods for quantification of nitrogen fixation associated with gramineae. Crit Rev Plant Sci 6:209–266

    Article  CAS  Google Scholar 

  • Borges LGA, Dalla Vechia V, Corçao G (2003) Characterization and genetic diversity via REP-PCR of Escherichia coli isolates from polluted waters in southern Brazil. FEMS Microbiol Ecol 45:173–180. doi:10.1016/S0168-6496(03)00147-8

    Article  Google Scholar 

  • Brämer CO, Vandamme P, Silva LF, Gomez JGC, Steinbüchel A (2001) Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int J Syst Evol Microbiol 51:1709–1713

    Article  PubMed  Google Scholar 

  • Briones AM, Okabe S, Umemiya Y, Ramsing N, Reichardt W, Okuyama H (2002) Influence of different cultivars on populations of ammonia-oxidizing bacteria in the root environment of rice. Appl Environ Microbiol 68:3067–3075. doi:10.1128/AEM.68.6.3067-3075.2002

    Article  PubMed  CAS  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75(10):4801–4805. doi:10.1073/pnas.75.10.4801

    Article  PubMed  CAS  Google Scholar 

  • Caballero-Mellado J, Onofre-Lemus J, Estrada SP, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319. doi:10.1128/AEM.00324-07

    Article  PubMed  CAS  Google Scholar 

  • Çakmakçi R, Dönmez F, Aydın A, Şahin F (2006) Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38(6):1482–1487. doi:10.1016/j.soilbio.2005.09.019

    Article  Google Scholar 

  • Çakmakçi R, Erat M, Erdogan U, Donmez MF (2007) The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plant. J Plant Nutr Soil Sci 170:288–295. doi:10.1002/jpln.200625105

    Article  Google Scholar 

  • Chabot R, Antoun H, Cescas MP (1996) Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli. Plant Soil 184:311–321

    Article  CAS  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261. doi:10.1099/ijs.0.64915-0

    Article  PubMed  CAS  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729. doi:10.1046/j.1462-2920.2003.00471.x

    Article  PubMed  CAS  Google Scholar 

  • De Freitas JR, Germida JJ (1990) Plant growth promoting rhizobacteria for winter wheat. Can J Microbiol 36:265–272

    Article  Google Scholar 

  • Di Cello F, Bevivino L, Chiarini R, Fani R, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize. Appl Environ Microbiol 63:4485–4493

    PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Döbereiner J, Baldani VLD, Baldani JI (1995) Como isolar e identificar bactérias diazotróficas de plantas não-leguminosas. Embrapa-SPI, Brasília

    Google Scholar 

  • Duarah I, Deka M, Saikia N, Deka Boruah HP (2011) Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. Biotechnol 1:227–238. doi:10.1007/s13205-011-0028-2

    Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36:184–189. doi:10.1016/j.apsoil.2007.02.005

    Article  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293. doi:10.1128/AEM.67.11.5285-5293.2001

    Article  PubMed  CAS  Google Scholar 

  • Estrada P, Mavingui P, Cournoyer B, Fontaine F, Balandreau J, Caballero-Mellado J (2002) A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can J Microbiol 48:285–294. doi:10.1139/W02-023

    Article  PubMed  CAS  Google Scholar 

  • Farina R, Beneduzi A, Ambrosini A, Campos SB, Lisboa BB, Wendisch V, Vargas LK, Passaglia LMP (2012) Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Appl Soil Ecol 55:44–52. doi:10.1016/j.apsoil.2011.12.011

    Article  Google Scholar 

  • Felske A, Rheims H, Wokerink A, Stackebrandt E, Akkermans DL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grasslands soils. Microbiol 143:2983–2989. doi:10.1099/00221287-143-9-2983

    Article  CAS  Google Scholar 

  • Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152. doi:10.1007/s00253-007-1077-7

    Article  PubMed  CAS  Google Scholar 

  • García-Fraile P, Rivas R, Willems A, Peix A, Martens M, Martínez-Molina E, Mateos PF, Velazquez E (2007) Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. Int J Syst Evol Microbiol 57:844–848. doi:10.1099/ijs.0.64680-0

    Article  PubMed  Google Scholar 

  • Gillis M, Van Van T, Bardin R, Goor M, Hebbar P, Willems A, Segers P, Kersters K, Heulin T, Fernande MP (1995) Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289. doi:10.1099/00207713-45-2-274

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetics mechanisms used by plant growth promoting bacteria. Imperial College Press, London

    Book  Google Scholar 

  • Glick BR, Pasternak JJ (2003) Plant growth promoting bacteria. In: Glick BR, Pasternak JJ (eds) Molecular biotechnology principles and applications of recombinant DNA, 3rd. ASM Press, Washington, pp 436–454

    Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7. doi:10.1016/j.femsle.2005.07.030

    Article  PubMed  CAS  Google Scholar 

  • Govindarajan M, Kwon SW, Weon HY (2007) Isolation, molecular characterization and growth-promoting activities of endophytic sugarcane diazotroph Klebsiella sp. GR9. World J Microbiol Biotechnol 23:997–1006. doi:10.1007/s11274-006-9326-y

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412. doi:10.1016/j.soilbio.2004.08.030

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hameed S, Yasmin S, Malik KA, Zafar Y, Hafeez FY (2004) Rhizobium, Bradyrhizobium and Agrobacterium strains isolated from cultivated legumes. Biol Fertil Soils 39:179–185. doi:10.1007/s00374-003-0697-z

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis version 2.09. Palaeontol Electron 4(1):9

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. doi:10.1007/s00248-007-9247-9

    Article  Google Scholar 

  • Hinton DM, Bacon CW (1995) Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia 129:117–125. doi:10.1007/BF01103471

    Article  PubMed  CAS  Google Scholar 

  • Jaillais Y, Chory J (2010) Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol 17:642–645. doi:10.1038/nsmb0610-642

    Article  PubMed  CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209. doi:10.1016/S0378-4290(99)00087-8

    Article  Google Scholar 

  • Joshi P, Bhatt AB (2011) Diversity and function of plant growth promoting Rhizobacteria associated with wheat Rhizosphere in North Himalayan Region. Int J Environ Sci 1:1135–1143

    Google Scholar 

  • Kämpfer P, Thummes K, Chu HI, Tan CC, Arun AB, Chen WM, Lai WA, Shen FT, Rekha PD, Young CC (2008) Pseudacidovorax intermedius gen. nov., sp. nov., a novel nitrogen-fixing betaproteobacterium isolated from soil. Int J Syst Evol Microbiol 58:491–495. doi:10.1099/ijs.0.65175-0

    Article  PubMed  Google Scholar 

  • Kaschuk G, Hungria M, Andrade DS, Campo RJ (2006) Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 32:210–220. doi:10.1016/j.apsoil.2005.06.008

    Article  Google Scholar 

  • Khorshidi YR, Ardakani MR, Ramezanpour MR, Khavazi K, Zargari K (2011) Response of yield and yield components of rice (Oryza sativa L.) to Pseudomonas flouresence and Azospirillum lipoferum under different nitrogen levels. American-Eurasian J Agric Environ Sci 10:387–395

    Google Scholar 

  • Khush G (2003) Productivity improvements in rice. Nutr Rev 61:114–116. doi:10.1301/nr.2003.jun.S114-S116

    Article  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87. doi:10.1007/s003740050347

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Buma DS, De Boer W, Klinkhamer PGL, Van Veen JA (2002) Effects of above-ground plant species com-position and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek 81:509–520. doi:10.1023/A:1020565523615

    Article  PubMed  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospect. Plant Soil 252:151–167. doi:10.1023/A:1024175307238

    Article  CAS  Google Scholar 

  • Lim JH, Baek SH, Lee ST (2008) Burkholderia sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 58:565–569. doi:10.1099/ijs.0.65502-0

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Chin-A-Woeng T, Bloemberg GV (2002) Microbe plant interactons: principles and mechanisms. Antonie Van Leeuwenhoek 81:373–383. doi:10.1023/A:1020596903142

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM (1990) The rhizosphere. Wiley-Interscience, Chichester, p 458

    Google Scholar 

  • Magnani GS, Didonet CM, Cruz LM, Picheth CF, Pedrosa FO, Souza EM (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9:250–258. doi:10.4238/vol9-1gmr703

    Article  PubMed  CAS  Google Scholar 

  • Malik KA, Bilal R, Mezhnez S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Masalha J, Kosegarten H, Elmaci O, Mengel K (2000) The central role of microbial activity for iron acquisition in maize and sunflower. Biol Fertil Soils 30:433–439. doi:10.1007/s003740050021

    Article  CAS  Google Scholar 

  • Mitchell RJ, Hester AJ, Campbell CD, Chapman SJ, Cameron CM, Hewison RL, Potts JM (2010) Is vegetation composition or soil chemistry the best predictor of the soil microbial community? Plant Soil 333:417–430. doi:10.1007/s11104-010-0357-7

    Article  CAS  Google Scholar 

  • Neilands JK (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726. doi:10.1074/jbc.270.45.26723

    PubMed  CAS  Google Scholar 

  • Nogueira MA, Albino UB, Brandão-Junior O, Braun G, Cruz MF, Dias BA, Duarte RTD, Gioppo NMR, Menna P, Orlandi JM, Raimam MP, Rampazzo LGL, Santos MA, Silva MEZ, Vieira FP, Torezan JMD, Hungria M, Andrade G (2006) Promising indicators for assessment of agroecosystems alteration among natural, reforested and agricultural land use in southern Brazil. Agric Ecosyst Environ 115:237–247. doi:10.1016/j.agee.2006.01.008

    Article  Google Scholar 

  • Okon Y, Labandrera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years of worldwide field inoculation. Soil Biol Biochem 26:1591–1601. doi:10.1016/0038-0717(94)90311-5

    Article  CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15. doi:10.1034/j.1399-3054.2003.00086.x

    Article  PubMed  CAS  Google Scholar 

  • Reis VM, Estrada PS, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-Mellado J (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54:2155–2162. doi:10.1099/ijs.0.02879-0

    Article  PubMed  CAS  Google Scholar 

  • Reiter B, Bürgmann H, Burg K, Sessitsch A (2003) Endophytic nifH gene diversity in African sweet potato. Can J Microbiol 49:549–555. doi:10.1139/w03-070

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906. doi:10.1071/PP01093

    Google Scholar 

  • Rico A, Ortiz-Barredo A, Ritter E, Murillo J (2004) Genetic characterization of Erwinia amylovora strains by amplified fragment length polymorphism. J Appl Microbiol 96:302–310. doi:10.1046/j.1365-2672.2003.02156.x

    Article  PubMed  CAS  Google Scholar 

  • Roesch LFW, Quadros PD, Camargo FAO, Triplett EW (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World J Microbiol Biotechnol 23:1377–1383. doi:10.1007/s11274-007-9376-9

    Article  CAS  Google Scholar 

  • Roesch LFW, Camargo FAO, Bento FM, Triplett EW (2008) Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant Soil 302:91–104. doi:10.1007/s11104-007-9458-3

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Ed. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Santi Ferrara FI, Oliveira ZM, Gonzales HHS, Floh EIS, Barbosa HR (2011) Endophytic and rhizospheric enterobacteria isolated from sugar cane have different potentials for producing plant growth-promoting substances. Plant Soil 353:409–417. doi:10.1007/s11104-011-1042-1

    Article  Google Scholar 

  • Sasaki K, Ikeda S, Eda S, Mitsui H, Hanzawa E, Kisara C, Kazama Y, Kushida A, Shinano T, Minamisawa K, Sat T (2010) Impact of plant genotype and nitrogen level on rice growth response to inoculation with Azospirillum sp. strain B510 under paddy field conditions. Soil Sci Plant Nutr 56:636–644. doi:0.1111/j.1747-0765.2010.00499.x

    Article  CAS  Google Scholar 

  • Schulten HR, Schnitzer M (1998) The chemistry of soil organic nitrogen: a review. Biol Fertil Soils 26:1–15

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Chapter  Google Scholar 

  • Selosse MA, Baudoin E, Vandenkoornhuyse P (2004) Symbiotic microorganisms, a key for ecological success and protection of plants. C R Biol 327:639–648. doi:10.1016/j.crvi.2003.12.008

    Article  PubMed  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155. doi:10.1007/s00253-008-1419-0

    Article  PubMed  CAS  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shoebitz M, Ribaudo CM, Pardo MA, Cantore ML, Ciampi L, Curá JA (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41:1768–1774. doi:10.1016/j.soilbio.2007.12.031

    Article  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot R, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751. doi:10.1128/AEM.67.10.4742-4751.2001

    Article  PubMed  CAS  Google Scholar 

  • Sociedade Sul-Brasileira de Arroz Irrigado (2010) Arroz irrrigado: Recomendações técnicas para o Sul do Brasil. Bento Gonçalves, RS: Sosbai, p 188

  • Su C, Lei L, Duan Y, Zhang KQ, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003. doi:10.1007/s00253-011-3800-7

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolution genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tedesco JM, Gianelo C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análises de solo, plantas e outros materiais. Universidade Federal do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higging DG (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Ding Y, Zhu H, Yao L, Du B (2009) Genetic diversity of siderophore producing bacteria of tobacco Rhizosphere. Braz J Microbiol 40:276–284

    Article  Google Scholar 

  • Tuzun S, Kloepper JW (1994) In: Ryder MH (ed) Induced systemic resistance by plant growth-promoting rhizobacteria. CSIRO, Adelaide, pp 104–109

    Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. doi:10.1007/s10658-007-9165-1

    Article  Google Scholar 

  • Vega NWO (2007) A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake. Rev Fac Nal Agr Medellín 60:3621–3643

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • Wartiainen I, Eriksson T, Zheng W, Rasmussen U (2008) Variation in the active diazotrophic community in rice paddy-nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol 39:65–75. doi:10.1016/j.apsoil.2007.11.008

    Article  Google Scholar 

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant Soil 336:129–142. doi:10.1007/s11104-010-0454-7

    Article  CAS  Google Scholar 

  • Zhang Y, Li D, Wang H, Xiao Q, Liu X (2006) Molecular diversity of nitrogen-fixing bacteria from the Tibetan plateau, China. FEMS Microbiol Lett 260:134–142. doi:10.1111/j.1574-6968.2006.00317.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by a grant and fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brasil) and INCT da Fixação Biológica do Nitrogênio (Brasil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciane M. P. Passaglia.

Additional information

Responsible Editor: Jorge Vivanco.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table SM-1

The effect of native PGPR on the growth of rice under different nitrogen fertilizer treatments with or without inoculation in the field assay (DOC 44 kb)

Table SM-2

Number of panicles and rice yield under different nitrogen fertilizer treatments with or without inoculation of native PGPR in the field assay. (DOC 44 kb)

Table SM-3

Effect on N, P and K uptake per gram of rice shoot under different nitrogen fertilizer treatments with or without inoculation of native PGPR in the field assay. (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza, R., Beneduzi, A., Ambrosini, A. et al. The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366, 585–603 (2013). https://doi.org/10.1007/s11104-012-1430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1430-1

Keywords

Navigation