Skip to main content
Log in

Seasonal methane dynamics in three temperate grasslands on peat

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Drained peatlands are considered to be insignificant CH4 sources, but the effect of drainage on CH4 dynamics has not been extensively studied. We investigated seasonal dynamics of CH4 in two fen peat soils and one bog peat soil under permanent grassland in Denmark.

Methods

Soil CH4 concentrations were measured several times throughout the year in parallel to a one year CH4 flux monitoring campaign with static chambers. Additionally, CH4 production potentials were determined in a laboratory incubation assay for the bog soil.

Results

Methane fluxes were generally negligible, even though soil CH4 concentrations of up to 155 and 1000 μmol CH4 dm−3 were measured in one of the fen peats and in the bog peat, respectively. Significant CH4 concentrations were observed above the water table. Methane production assays confirmed the presence of viable methanogens in the upper parts of the bog peat soil. The aerenchymous plant Juncus effusus L. liberated CH4 from the peat at rates of up to 3.3 mg CH4 m−2 h−1. No CH4 dynamics were observed in the second fen peat which, in contrast to the other two sites, had high sulfate concentrations.

Conclusions

Peat type and the distribution of aerenchymous plants should be considered before dismissing grasslands on peat as CH4 sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PP:

polypropylene

References

  • Aaby B (1990) Geologi og mosedannelse i Store Vildmose området. (Geology and bog formation in the Store Vildmose region [Jylland]). In: Miljöministeriet (Ministry of Environment) (ed) Landet og loven (Country and the law), pp. 141–151

  • Amaral JA, Knowles R (1995) Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol Lett 126:215–220. doi:10.1111/j.1574-6968.1995.tb07421.x

    Article  CAS  Google Scholar 

  • Askaer L, Elberling B, Glud RN, Kühl M, Lauritsen FR, Joensen HP (2010) Soil heterogeneity effects on O2 distribution and CH4 emissions from wetlands: In situ and mesocosm studies with planar O2 optodes and membrane inlet mass spectrometry. Soil Biol Biochem 42:2254–2265. doi:10.1016/j.soilbio.2010.08.026

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-39. http://CRAN.R-project.org/package=lme4

  • Beer J, Blodau C (2007) Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochim Cosmochim Acta 71:2989–3002. doi:10.1016/j.gca.2007.03.010

    Article  CAS  Google Scholar 

  • Blodau C, Moore TR (2003) Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse. Soil Biol Biochem 35:535–547. doi:10.1016/S0038-0717(03)00008-7

    Article  CAS  Google Scholar 

  • Bloom AA, Palmer PI, Fraser A, Reay DS, Frankenberg C (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327:322–325. doi:10.1126/science.1175176

    Article  PubMed  CAS  Google Scholar 

  • Boelter DH (1968) Important physical properties of peat materials. In: Department of Energy, Minds and Resources and National Research Council of Canada (ed) Proceedings, third international peat congress. Quebec, Canada, pp. 18–23

  • Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4:115–124. doi:10.1046/j.1462-2920.2002.00279.x

    Article  PubMed  CAS  Google Scholar 

  • Boughton EH, Quintana-Ascencio PF, Bohlen PJ (2011) Refuge effects of Juncus effusus in grazed, subtropical wetland plant communities. Plant Ecol 212:451–460. doi:10.1007/s11258-010-9836-4

    Article  Google Scholar 

  • Byrne KA, Chojnicki B, Christensen TR, Drösler M, Freibauer A, Friborg T, Frolking S, Lindroth A, Mailhammer J, Malmer N, Selin P, Turunen J, Valentini R, Zetterberg L (2004) EU peatlands: Current carbon stocks and trace gas fluxes. Carboeurope-GHG, concerted action synthesis of the European greenhouse gas budget, Department of Forest Science and Environment, Viterbo, Italy

  • Clymo RS, Bryant CL (2008) Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim Cosmochim Acta 72:2048–2066. doi:10.1016/j.gca.2008.01.032

    Article  CAS  Google Scholar 

  • Colmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36. doi:10.1046/j.1365-3040.2003.00846.x

    Article  CAS  Google Scholar 

  • Couwenberg J (2009a) Emission factors for managed peat soils (organic soils, histosols). An analysis of IPCC default values. Report, Wetlands International

  • Couwenberg J (2009b) Methane emissions from peat soils (organic soils, histosols). Facts, MRV-ability, emission factors. Report, Wetlands International

  • de Deyn GB, Quirk H, Oakley S, Ostle N, Bardgett RD (2011) Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. Biogeosciences 8:1131–1139. doi:10.5194/bg-8-1131-2011

    Article  Google Scholar 

  • Drösler M (2005) Trace gas exchange and climatic relevance of bog ecosystems, Southern Germany. Dissertation, Technische Universität München

  • Drösler M, Freibauer A, Christensen TR, Friborg T (2008) Observations and status of Peatland greenhouse gas emissions in Europe. In: Dolman AJ, Valentini R, Freibauer A (eds) The continental-scale greenhouse gas balance of Europe. Springer, New York, pp 243–261

    Chapter  Google Scholar 

  • Flessa H, Wild U, Klemisch M, Pfadenhauer J (1998) Nitrous oxide and methane fluxes from organic soils under agriculture. Eur J Soil Sci 49:327–335. doi:10.1046/j.1365-2389.1998.00156.x

    Article  CAS  Google Scholar 

  • Fogg PG, Gerrard W (1991) Solubility of gases in liquids. A critical evaluation of gas/liquid systems in theory and practice. Wiley, Chichester

    Google Scholar 

  • Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6:205–226. doi:10.1006/anae.2000.0345

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Schöfl M, Zak D, Minke M, Gelbrecht J, Augustin J, Freibauer A (2011) Organic sediment formed during inundation of a degraded fen grassland emits large fluxes of CH4 and CO2. Biogeosciences 8:1539–1550. doi:10.5194/bg-8-1539-2011

    Article  Google Scholar 

  • Hendriks DMD, van Huissteden J, Dolman AJ (2010) Multi-technique assessment of spatial and temporal variability of methane fluxes in a peat meadow. Agric For Meteorol 150:757–774. doi:10.1016/j.agrformet.2009.06.017

    Article  Google Scholar 

  • Holden J, Chapman PJ, Labadz JC (2004) Artificial drainage of peatlands: hydrological and hydrochemical process and wetland restoration. Progr Phys Geogr 28:95–123. doi:10.1191/0309133304pp403ra

    Article  Google Scholar 

  • Hornibrook ERC, Bowes HL, Culbert A, Gallego-Sala AV (2009) Methanotrophy potential versus methane supply by pore water diffusion in peatlands. Biogeosciences 6:1491–1504. doi:10.5194/bgd-5-2607-2008

    Article  CAS  Google Scholar 

  • Hutchinson GL, Livingston GP (2001) Vents and seals in non-steady-state chambers used for measuring gas exchange between soil and the atmosphere. Eur J Soil Sci 52:675–682. doi:10.1046/j.1365-2389.2001.00415.x

    Article  Google Scholar 

  • Hutchinson GL, Mosier AR (1981) Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Am J 45:311–316

    Article  CAS  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of mires and peatlands. Background and principles including a framework for decision-making. International Peat Society, Jyväskylä. International Mire Conservation Group, Greifswald.

  • Kelker D, Chanton J (1997) The effect of clipping on methane emissions from Carex. Biogeochemistry 39:37–44. doi:10.1023/A:1005866403120

    Article  CAS  Google Scholar 

  • Kettunen A, Kaitala V, Lehtinen A, Lohila A, Alm J, Silvola J, Martikainen PJ (1999) Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biol Biochem 31:1741–1749. doi:10.1016/S0038-0717(99)00093-0

    Article  CAS  Google Scholar 

  • King JY, Reeburgh WS (2002) A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra. Soil Biol Biochem 34:173–180. doi:10.1016/S0038-0717(01)00164-X

    Article  CAS  Google Scholar 

  • Knorr KH, Glaser B, Blodau C (2008) Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought. Biogeosciences 5:1457–1473. doi:10.5194/bg-5-1457-2008

    Article  CAS  Google Scholar 

  • Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot 105:141–153. doi:10.1093/aob/mcp201

    Article  PubMed  CAS  Google Scholar 

  • Lai DYF (2009) Methane dynamics in northern peatlands: a review. Pedosphere 19:409–421. doi:10.1016/S1002-0160(09)00003-4

    Article  CAS  Google Scholar 

  • Langeveld CA, Segers R, Dirks BOM, van den Pol-Van DA, Velthof GL, Hensen A (1997) Emissions of CO2, CH4 and N2O from pasture on drained peat soils in the Netherlands. Eur J Agron 7:35–42. doi:10.1016/S0378-519X(97)80008-6

    Article  CAS  Google Scholar 

  • Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications a synthesis. Biogeosciences 5:1475–1491. doi:10.5194/bg-5-1475-2008

    Article  CAS  Google Scholar 

  • Maljanen M, Sigurdsson BD, Gudmundsson J, Óskarsson H, Huttunen JT, Martikainen PJ (2010) Greenhouse gas balances of managed peatlands in the Nordic countries—present knowledge and gaps. Biogeosciences 7:2711–2738. doi:10.5194/bg-7-2711-2010

    Article  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1974) A serum bottle modification of the hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987

    PubMed  CAS  Google Scholar 

  • Neale CN, Hughes JB, Ward C (2000) Impacts of unsaturated zone properties on oxygen transport and aquifer reaeration. Ground Water 38:784–794. doi:10.1111/j.1745-6584.2000.tb02714.x

    Article  CAS  Google Scholar 

  • Paul S, Küsel K, Alewell C (2006) Reduction processes in forest wetlands: Tracking down heterogeneity of source/sink functions with a combination of methods. Soil Biol Biochem 38:1028–1039. doi:10.1016/j.soilbio.2005.09.001

    Article  CAS  Google Scholar 

  • Pedersen AR, Petersen SO, Schelde K (2010) A comprehensive approach to soil-atmosphere trace-gas flux estimation with static chambers. Eur J Soil Sci 61:888–902. doi:10.1111/j.1365-2389.2010.01291.x

    Article  Google Scholar 

  • Petersen SO, Schjønning P, Thomsen IK, Christensen BT (2008) Nitrous oxide evolution from structurally intact soil as influenced by tillage and soil water content. Soil Biol Biochem 40:967–977. doi:10.1016/j.soilbio.2007.11.017

    Article  CAS  Google Scholar 

  • Petersen SO, Hoffmann CC, Schäfer CM, Blicher-Mathiesen G, Elsgaard L, Kristensen K, Larsen SE, Torp SE, Greve MH (2012) Annual emissions of CH4 and N2O, and ecosystem respiration, from eight organic soils in Western Denmark managed by agriculture. Biogeosciences 9:403–422. doi:10.5194/bg-9-403-2012

    Article  CAS  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Rana N, Sellers BA (2009) Soft Rush (Juncus effusus) control in Florida pastures. Weed Technol 23:321–323. doi:10.1614/WT-08-159.1

    Article  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roden E, Wetzel R (2003) Competition between Fe(III)-reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Microb Ecol 45:252–258. doi:10.1007/s00248-002-1037-9

    Article  PubMed  CAS  Google Scholar 

  • Saarnio S, Alm J, Silvola J, Lohila A, Nykänen H, Martikainen PJ (1997) Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia 110:414–422. doi:10.1007/s004420050176

    Article  Google Scholar 

  • Saarnio S, Winiwarter W, Leitão J (2009) Methane release from wetlands and watercourses in Europe. Atmos Environ 43:1421–1429. doi:10.1016/j.atmosenv.2008.04.007

    Article  CAS  Google Scholar 

  • Scharling M (2000) KLIMAGRID—Danmark, normaler 1961–90, måneds- og årsværdier. Nedbør 10*10, 20*20 & 40*40 km, temperatur og potential fordampning 20*20 & 40*40 km. Metodebeskrivelse & dataset. Technical Report 00-11, Copenhagen

  • Schwärzel K, Renger M, Sauerbrey R, Wessolek G (2002) Soil physical characteristics of peat soils. J Plant Nutr Soil Sci 165:479–486. doi:10.1002/1522-2624(200208)165:4

    Article  Google Scholar 

  • Seber GAF, Wild CJ (1989) Nonlinear regression. Wiley, New York

    Book  Google Scholar 

  • Smemo KA, Yavitt JB (2011) Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 8:779–793. doi:10.5194/bg-8-779-2011

    Article  CAS  Google Scholar 

  • Stanley EH, Ward AK (2010) Effects of vascular plants on seasonal pore water carbon dynamics in a lotic wetland. Wetlands 30:889–900. doi:10.1007/s13157-010-0087-x

    Article  Google Scholar 

  • Strack M, Waddington JM, Tuittila ES (2004) Effect of water table drawdown on northern peatland methane dynamics: implications for climate change. Global Biogeochem Cycles 18:1–7. doi:10.1029/2003GB002209

    Article  Google Scholar 

  • Ström L, Mastepanov M, Christensen TR (2005) Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75:65–82. doi:10.1007/s10533-004-6124-1

    Article  Google Scholar 

  • Teh YA, Silver WL, Conrad ME (2005) Oxygen effects on methane production and oxidation in humid tropical forests. Glob Change Biol 11:1283–1297. doi:10.1111/j.1365-2486.2005.00983.x

    Article  Google Scholar 

  • Tokida T, Miyazaki T, Mizoguchi M (2009) Physical controls on ebullition losses of methane from peatlands. In: Baird AJ, Belyea LR, Comas X, Reeve AS, Slater LD (eds) Carbon cycling in northern Peatlands. American Geophysical Union, Washington, pp 219–228

    Chapter  Google Scholar 

  • van Bodegom PM, Scholten JCM, Stams AJM (2004) Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol Ecol 49:261–268. doi:10.1016/j.femsec.2004.03.017

    Article  PubMed  Google Scholar 

  • van Huissteden J, van den Bos R, Marticorena Alvarez I (2006) Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Neth J Geosci 85:3–18

    Google Scholar 

  • Verry ES, Boelter DH, Paivanen J, Nichols DS, Malterer T, Gafni A (2011) Physical properties of organic soils. In: Kolka R, Sebestyen S, Verry ES, Brooks K (eds) Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest. CRC Press, Boca Raton, pp 135–176

    Chapter  Google Scholar 

  • Watson A, Nedwell DB (1998) Methane production and emission from peat: the influence of anions (sulphate, nitrate) from acid rain. Atmos Environ 32:3239–3245. doi:10.1016/S1352-2310(97)00501-3

    Article  CAS  Google Scholar 

  • Yaacobi M, Ben-Naim A (1973) Hydrophobic interaction in water-ethanol mixtures. J Solution Chem 2:425–443. doi:10.1007/BF00651005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the following current and former staff members for their support in sampling the soil cores: Bodil Stensgaard, Jørgen M. Nielsen, Karin Dyrberg, Lene Skovmose, Paw Rasmussen, Søren B. Torp and Stig T. Rasmussen. We would also like to thank Rodrigo S. Labouriau for his statistical advice. This study was funded by the Danish Ministry of the Environment, with support from Aarhus University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-M. Schäfer.

Additional information

Responsible Editor: Paul Bodelier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, CM., Elsgaard, L., Hoffmann, C.C. et al. Seasonal methane dynamics in three temperate grasslands on peat. Plant Soil 357, 339–353 (2012). https://doi.org/10.1007/s11104-012-1168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1168-9

Keywords

Navigation