Skip to main content
Log in

Biochar mediates systemic response of strawberry to foliar fungal pathogens

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and Aims

Various biochars added to soil have been shown to improve plant performance. Moreover, a wood biochar was found to induce tomato and pepper plant systemic resistance to two foliar fungal pathogens. The aim of this study was to explore the ability of wood biochar and greenhouse waste biochar to induce systemic resistance in strawberry plants against Botrytis cinerea, Colletotrichum acutatum and Podosphaera apahanis, and to examine at the molecular level some of their impacts on plant defense mechanisms.

Methods

Disease development tests on plants grown on 1 or 3% biochar-amended potting mixture, and quantification of relative expression of 5 plant defense-related genes (FaPR1, Faolp2, Fra a3, Falox, and FaWRKY1) by real-time PCR were carried out.

Results

Biochar addition to the potting medium of strawberry plants suppressed diseases caused by the three fungi, which have very different infection strategies. This suggests that biochar stimulated a range of general defense pathways, as confirmed by results of qPCR study of defense-related gene expression. Furthermore, primed-state of defense-related gene expression was observed upon infection by B. cinerea and P. aphanis.

Conclusion

The ability of biochar amendment to promote transcriptional changes along different plant defense pathways probably contributes to its broad spectrum capacity for disease suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

qPCR:

real time quantitative PCR

RT:

reverse transcription

IR:

induced resistance

ISR:

induced systemic resistance

SAR:

systemic acquired resistance

HR:

hypersensitive reaction

PR:

pathogenesis related proteins

SA:

salicylic acid

PGPR:

plant growth-promoting rhizobacteria

PGPF:

plant growth-promoting fungi

ET:

ethylene

JA:

jasmonic acid

MeJA:

methyl jasmonate

CW:

biochar produced from citrus wood

GHW-450:

biochar produced from greenhouse waste at 450°C

AUDPC:

area under the disease progress curve

Ct:

cycle threshold

References

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res 111:81–84

    Article  Google Scholar 

  • Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Biol Rep 18:109–115

    Article  CAS  Google Scholar 

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Casado-Diaz A, Encinas-Villarejo S, de los Santos B, Schiliro E, Yubero-Serrano EM, Amil-Ruiz F, Pocovi MI, Pliego-Alfaro F, Dorado G, Rey M, Romero F, Munoz-Blanco J, Caballero JL (2006) Analysis of strawberry genes differentially expressed in response to Colletotrichum infection. Physiol Plant 128:633–650

    Article  CAS  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B, Grp P-A-P (2006) Priming: Getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • De Cal A, Redondo C, Sztejnberg A, Melgarejo P (2008) Biocontrol of powdery mildew by Penicillium oxalicum in open-field nurseries of strawberries. Biol Cont 47:103–107

    Article  Google Scholar 

  • Elad Y, Rav-David D, Meller Harel Y, Borenshtein M, Ben Kalifa H, Silber A, Graber ER (2010) Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 100:913–921

    Article  PubMed  Google Scholar 

  • Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de Los Santos B, Romero F, Pliego-Alfaro F, Munoz-Blanco J, Caballero JL (2009) Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. J Exp Bot 60:3043–3065

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Ntahimpera N, Christ BJ, Lin GY (2000) Comparison of field, greenhouse, and detached-leaflet evaluations of tomato germ plasm for early blight resistance. Plant Dis 84:967–972

    Article  Google Scholar 

  • Freeman S, Minz D, Kolesnik I, Barbul O, Zveibil A, Maymon M, Nitzani Y, Kirshner B, Rav-David D, Bilu A, Dag A, Shafir S, Elad Y (2004) Trichoderma biocontrol of Colletotrichum acutatum and Botrytis cinerea and survival in strawberry. Eur J Plant Pathol 110:361–370

    Article  CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Rubio-Moraga A, Ahrazem O (2011) Molecular cloning and characterisation of a pathogenesis-related protein CsPR10 from Crocus sativus. Plant Biol 13:297–303

    Article  PubMed  CAS  Google Scholar 

  • Graber ER, Meller Harel Y, Kolton M, Cytryn E, Silber A, Rav-David D, Tsechansky L, Borenshtein M, Elad Y (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337:481–496

    Article  CAS  Google Scholar 

  • Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF (2011) Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manag 92:223–228

    Article  CAS  Google Scholar 

  • Hukkanen AT, Kokko HI, Buchala AJ, McDougall GJ, Stewart D, Karenlampi SO, Karjalainen RO (2007) Benzothiadiazole induces the accumulation of phenolics and improves resistance to powdery mildew in strawberries. J Agric Food Chem 55:1862–1870

    Article  PubMed  CAS  Google Scholar 

  • Joyce DC, Terry LA (2000) Suppression of grey mould on strawberry fruit with the chemical plant activator acibenzolar. Pest Manag Sci 56:989–992

    Article  Google Scholar 

  • Kolton M, Meller Harel Y, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 77:4924–4930

    Article  PubMed  CAS  Google Scholar 

  • Kravchuk Z, Vicedo B, Flors V, Camanes G, Gonzalez-Bosch C, Garcia-Agustin P (2011) Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea. J Plant Physiol 168:359–366

    Article  PubMed  CAS  Google Scholar 

  • Kwon Y, Oh JE, Noh H, Hong SW, Bhoo SH, Lee H (2011) The ethylene signaling pathway has a negative impact on sucrose-induced anthocyanin accumulation in Arabidopsis. J Plant Res 124:193–200

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota - A review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Meller Harel Y, Kolton M, Elad Y, Rav-David D, Cytryn E, Ezra D, Borenstein M, Shulchani R, Graber ER (2011) Induced systemic resistance in strawberry (Fragaria × ananassa) to powdery mildew using various control agents. IOBC/wprs Bull 71:47–51

    Google Scholar 

  • Moyano E, Encinas-Villarejo S, Lopez-Raez JA, Redondo-Nevado J, Blanco-Portales R, Bellido ML, Sanz C, Caballero JL, Munoz-Blanco J (2004) Comparative study between two strawberry pyruvate decarboxylase genes along fruit development and ripening, post-harvest and stress conditions. Plant Sci 166:835–845

    Article  CAS  Google Scholar 

  • Munoz C, Hoffmann T, Escobar NM, Ludemann F, Botella MA, Valpuesta V, Schwab W (2010) The strawberry fruit Fra a allergen functions in flavonoid biosynthesis. Mol Plant 3:113–124

    Article  PubMed  CAS  Google Scholar 

  • Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150:1648–1655

    Article  PubMed  CAS  Google Scholar 

  • Pertot I, Zasso R, Amsalem L, Baldessari M, Angeli G, Elad Y (2008) Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Prot 27:622–631

    Article  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Van Wees SCM, Ton J, Leon-Kloosterziel KM, Keurentjes JJB, Verhagen BWM, Knoester M, Van der Sluis I, Bakker PAHM, Van Loon LC (2001) Rhizobacteria-mediated induced systemic resistance: Triggering, signalling and expression. Eur J Plant Pathol 107:51–61

    Article  Google Scholar 

  • Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiological and molecular features. Plant Physiol 130:15–21

    Article  PubMed  CAS  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  PubMed  CAS  Google Scholar 

  • Silber A, Levkovitch I, Graber ER (2010) pH-dependent mineral release and surface properties of cornstraw biochar: agronomic implications. Environ Sci Technol 44:9318–9323

    Article  PubMed  CAS  Google Scholar 

  • Swartzberg D, Kirshner B, Rav-David D, Elad Y, Granot D (2008) Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. Eur J Plant Pathol 120:289–297

    Article  CAS  Google Scholar 

  • Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27:205–212

    Article  Google Scholar 

  • Vaccari FP, Baronti S, Lugato E, Genesio L, Castaldi S, Fornasier F, Miglietta F (2011) Biochar as a strategy to sequester carbon and increase yield in durum wheat. Eur J Agron 34:231–238

    Article  CAS  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Path 55:85–97

    Article  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908

    Article  PubMed  CAS  Google Scholar 

  • Vicedo B, Flors V, De La OLM, Finiti I, Kravchuk Z, Real MD, Garcia-Agustin P, Gonzalez-Bosch C (2009) Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Mol Plant Microbe Interact 22:1455–1465

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Khan AA, Shih CT, Shih DS (2001) Cloning and sequence determination of a gene encoding an osmotin-like protein from strawberry (Fragaria X ananassa Duch.). DNA Seq 12:447–453

    PubMed  CAS  Google Scholar 

  • Zhang Y, Shih DS (2007) Isolation of an osmotin-like protein gene from strawberry and analysis of the response of this gene to abiotic stresses. J Plant Physiol 164:68–77

    Article  PubMed  CAS  Google Scholar 

  • Zhao JP, Su XH (2010) Patterns of molecular evolution and predicted function in thaumatin-like proteins of Populus trichocarpa. Planta 232:949–962

    Article  PubMed  CAS  Google Scholar 

  • Zimmerli L, Metraux JP, Mauch-Mani B (2001) beta-Aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol 126:517–523

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Nir Dai and Dr. David Ezra for their help with the molecular work. This work was supported by grants from The Autonomous Province of Trento, Call for Proposal Major Projects 2006, Project ENVIROCHANGE and by the Chief Scientist of the Ministry of Agriculture and Rural Development of Israel, project number 301-0693-10. This paper is contribution no. 506/11 of the Agricultural Research Organization, The Volcani Center, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigal Elad.

Additional information

Responsible Editor: Johannes Lehmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meller Harel, Y., Elad, Y., Rav-David, D. et al. Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant Soil 357, 245–257 (2012). https://doi.org/10.1007/s11104-012-1129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1129-3

Keywords

Navigation