Skip to main content
Log in

Does spatial distribution of tree size account for spatial variation in soil respiration in a tropical forest?

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

We explored the relationship between soil processes, estimated through soil respiration (R soil ), and the spatial variation in forest structure, assessed through the distribution of tree size, in order to understand the determinism of spatial variations in R soil in a tropical forest. The influence of tree size was examined using an index (I c ) calculated for each tree as a function of (1) the trunk cross section area and (2) the distance from the measurement point. We investigated the relationships between I c and litterfall, root mass and R soil , respectively. Strong significant relationships were found between I c and both litterfall and root mass. R soil showed a large range of variations over the 1-ha experimental plot, from 1.5 to 12.6 gC m−2 d−1. The best relationship between I c and R soil only explained 17% of the spatial variation in R soil . These results support the assumption that local spatial patterns in litter production and root mass depend on tree distribution in tropical forests. Our study also emphasizes the modest contribution of tree size distribution–which is mainly influenced by the presence of the biggest trees (among the large range size of the inventoried trees greater than 10 cm diameter at 1.30 m above ground level or at 0.5 m above the buttresses)–in explaining spatial variations in R soil .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adachi M, Bekku YS, Konuma A, Kadir WR, Okuda T, Koizumi H (2005) Required sample size for estimating soil respiration rates in large areas of two tropical forests and of two types of plantation in Malaysia. For Ecol Manag 210:455–459. doi:10.1016/j.foreco.2005.02.011

    Article  Google Scholar 

  • Atger C, Edelin C (1994) Stratégies d’occupation du milieu souterrain par les systèmes racinaires des arbres. Rev Ecol (Terre Vie) 49:343–356

    Google Scholar 

  • Aubert M, Bureau F, Vinceslas-Akpa M (2005) Sources of spatial and temporal variability of inorganic nitrogen in pure and mixed deciduous temperate forests. Soil Biol Biochem 37:67–79. doi:10.1016/j.soilbio.2004.07.025

    Article  CAS  Google Scholar 

  • Berger TW, Inselsbacher E, Zechmeister-Boltenstern S (2010) Carbon dioxide emissions of soils under pure and mixed stands of beech and spruce, affected by decomposing foliage litter mixtures. Soil Biol Biochem 42:986–997. doi:10.1016/j.soilbio.2010.02.020

    Article  CAS  Google Scholar 

  • Bonal D, Bosc A, Ponton S, Goret JY, Burban B, Gross P, Bonnefond JM, Elbers J, Longdoz B, Epron D, Guehl JM, Granier A (2008) Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Chang Biol 14:1917–1933. doi:10.1111/j.1365-2486.2008.01610.x

    Article  Google Scholar 

  • Bréchet L, Ponton S, Roy J, Freycon V, Couteaux MM, Bonal D, Epron D (2009) Do tree species characteristics influence soil respiration in tropical forests? A test based on 16 tree species planted in monospecific plots. Plant Soil 319:235–246. doi:10.1007/s11104-008-9866-z

    Article  Google Scholar 

  • Brown D, Rothery P (1994) Models in biology: mathematics, statistics and computing. Wiley, Chichester

    Google Scholar 

  • Buchmann N, Guehl J-M, Barigah TS, Ehleringer JR (1997) Interseasonal comparison of CO2 concentrations, isotopic composition, and carbon dynamics in an Amazonian rainforest (French Guiana). Oecologia 110:120–131

    Article  Google Scholar 

  • Chambers JQ, Tribuzy ES, Toledo LC, Crispim BF, Higuchi N, dos Santos J, Araujo AC, Kruijt B, Nobre AD, Trumbore SE (2004) Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol Appl 14:S72–S88. doi:10.1890/01-6012

    Article  Google Scholar 

  • Davidson EA, Verchot LV, Cattanio JH, Ackerman IL, Carvalho JEM (2000) Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry 48:53–69. doi:10.1023/A:1006204113917

    Article  CAS  Google Scholar 

  • Dijkstra FA, West JB, Hobbie SE, Reich PB (2009) Antagonistic effects of species on C respiration and net N mineralization in soils from mixed coniferous plantations. For Ecol Manag 257:1112–1118. doi:10.1016/j.foreco.2008.11.014

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Epron D, Nouvellon Y, Roupsard O, Mouvondy W, Mabiala A, Saint-Andre L, Joffre R, Jourdan C, Bonnefond J-M, Berbigier P, Hamel O (2004) Spatial and temporal variations of soil respiration in a Eucalyptus plantation in Congo. For Ecol Manag 202:149–160. doi:10.1016/j.foreco.2004.07.019

    Article  Google Scholar 

  • Epron D, Bosc A, Bonal D, Freycon V (2006) Spatial variation of soil respiration across a topographic gradient in a tropical rainforest in French Guiana. J Trop Ecol 22:565–574. doi:10.1017/S0266467406003415

    Article  Google Scholar 

  • Fang C, Moncrieff JB, Gholz HL, Clark KL (1998) Soil CO2 efflux and its spatial variation in a Florida slash pine plantation. Plant Soil 205:135–146. doi:10.1023/A:1004304309827

    Article  CAS  Google Scholar 

  • FAO-ISRIC-ISSS (1998) World reference base for soil resources. World soil resources reports, vols. 84. Food and Agricultural Organisation, Rome

    Google Scholar 

  • Ferrari JB, Sugita S (1996) A spatially explicit model of leaf litter fall in hemlock-hardwood forests. Can J For Res 26:1905–1913

    Article  Google Scholar 

  • Gourlet-Fleury S, Ferry B, Molino J-F, Petronelli P, Schmitt L (2004) Experimental plots: key features. In: Gourley-Fleury S, Guehl J-M, Laroussinie O (eds) Ecology and management of a Neotropical rainforest. Elsevier, Paris, pp 3–30

    Google Scholar 

  • Guehl JM, Domenach AM, Bereau M, Barigah TS, Casabianca H, Ferhi A, Garbaye J (1998) Functional diversity in an Amazonian rainforest of French Guyana: a dual isotope approach (δ15N and δ13C). Oecologia 116:316–330

    Google Scholar 

  • Hättenschwiler S, Aeschlimann B, Couteaux MM, Roy BD (2008) High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol 179:165–175. doi:10.1111/j.1469-8137.2008.02438.x

    Article  PubMed  Google Scholar 

  • Ishizuka S, Iswandi A, Nakajima Y, Yonemura L, Sudo S, Tsuruta H, Muriyarso D (2005) Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. Nutr Cycl Agroecosyst 71:55–62. doi:10.1007/s10705-004-5284-7

    Article  CAS  Google Scholar 

  • Janssens IA, Barigah TS, Ceulemans R (1998) Soil CO2 efflux rates in different tropical vegetation types in French Guiana. Ann For Sci 55:671–680. doi:10.1051/forest:19980603

    Article  Google Scholar 

  • Kamei J, Pandey HN, Barik SK (2009) Tree species distribution and its impact on soil properties, and nitrogen and phosphorus mineralization in a humid subtropical forest ecosystem of Northeastern India. Can J For Res 39:36–47

    Article  CAS  Google Scholar 

  • Katayama A, Kume T, Komatsu H, Ohashi M, Nakagawa M, Yamashita M, Otsuki K, Suzuki M, Kumagai T (2009) Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agric For Meteorol 149:1666–1673. doi:10.1016/j.agrformet.2009.05.007

    Article  Google Scholar 

  • Kosugi Y, Mitani T, Ltoh M, Noguchi S, Tani M, Matsuo N, Takanashi S, Ohkubo S, Nik AR (2007) Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric For Meteorol 147:35–47. doi:10.1016/j.agrformet.2007.06.005

    Article  Google Scholar 

  • Kuuluvainen T, Linkosalo T (1998) Estimation of a spatial tree-influence model using iterative optimization. Ecol Model 106:63–75. doi:10.1016/S0304-3800(97)00182-8

    Article  Google Scholar 

  • Martin JG, Bolstad PV (2009) Variation of soil respiration at three spatial scales: components within measurements, intra-site variation and patterns on the landscape. Soil Biol Biochem 41:530–543. doi:10.1016/j.soilbio.2008.12.012

    Article  CAS  Google Scholar 

  • Metcalfe DB, Meir P, Aragao L, Malhi Y, da Costa ACL, Braga A, Goncalves PHL, de Athaydes J, de Almeida SS, Williams M (2007) Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. J Geophys Res 112:1–9. doi:G0400110.1029/2007jg000443

    Article  Google Scholar 

  • Negrete-Yankelevich S, Fragoso C, Newton AC, Russell G, Heal OW (2006) Spatial patchiness of litter, nutrients and macroinvertebrates during secondary succession in a tropical montane cloud forest in Mexico. Plant Soil 286:123–139. doi:10.1007/s11104-006-9031-5

    Article  Google Scholar 

  • Newbery DM, Schwan S, Chuyong GB, van der Burgt XM (2009) Buttress form of the central African rain forest tree Microberlinia bisulcata, and its possible role in nutrient acquisition. Trees Struct Funct 23:219–234. doi:10.1007/s00468-008-0270-3

    Google Scholar 

  • Ohashi M, Kume T, Yamane S, Suzuki M (2007) Hot spots of soil respiration in an Asian tropical rainforest. Geophys Res Lett 34:1–4. doi:10.1029/2007GL029587

    Article  Google Scholar 

  • Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Glob Biogeochem Cycles 9:23–36

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44:81–99

    Google Scholar 

  • Schwendenmann L, Veldkamp E, Brenes T, O’Brien JJ, Mackensen J (2003) Spatial and temporal variation in soil CO2 efflux in an old-growth neotropical rain forest, La Selva, Costa Rica. Biogeochemistry 64:111–128. doi:10.1023/A:1024941614919

    Article  CAS  Google Scholar 

  • Silver WL, Thompson AW, McGroddy ME, Varner RK, Dias JD, Silva H, Crill PM, Keller M (2005) Fine root dynamics and trace gas fluxes in two lowland tropical forest soils. Glob Chang Biol 11:1–17. doi:10.1111/j.1365-2486.2005.00903.x

    Article  Google Scholar 

  • Soe ARB, Buchmann N (2005) Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiol 25:1427–1436. doi:10.1093/treephys/25.11.1427

    PubMed  CAS  Google Scholar 

  • Sotta ED, Meir P, Malhi Y, Nobre AD, Hodnett M, Grace J (2004) Soil CO2 efflux in a tropical forest in the central Amazon. Glob Chang Biol 10:601–617. doi:10.1111/j.1529-8817.2003.00761.x

    Article  Google Scholar 

  • Staelens J, Nachtergale L, Luyssaert S, Lust N (2003) A model of wind-influenced leaf litterfall in a mixed hardwood forest. Can J For Res 33:201–209. doi:10.1139/x02-174

    Article  Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738. doi:10.1038/ngeo671

    Article  Google Scholar 

  • Vincent G, Shahriari AR, Lucot E, Badot P-M, Epron D (2006) Spatial and seasonal variations in soil respiration in a temperate deciduous forest with fluctuating water table. Soil Biol Biochem 38:2527–2535. doi:10.1016/j.soilbio.2006.03.009

    Article  CAS  Google Scholar 

  • Vose JM, Bolstad PV (2006) Biotic and abiotic factors regulating forest floor CO2 flux across a range of forest age classes in the Southern Appalachians. Pedobiologia 50:577–587. doi:10.1016/j.pedobi.2006.10.006

    Article  CAS  Google Scholar 

  • Vose JM, Ryan MG (2002) Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Glob Chang Biol 8:182–193. doi:10.1046/j.1365-2486.2002.00464.x

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a PhD Grant from the French “Ministère de l’Education Nationale et de la Recherche” to LB. The ORE “Ecosystèmes Forestiers” managed by GIP-Ecofor contributed to the funding of the field experiment. We are grateful to Jean-Yves Goret, Cyril Douthe and Louis Maire for their help during data acquisition in the field, to Pierre Chauvet for the geostatistical analyses, and to Amy Deacon for the improvement of the English writing. The helpful comments from two anonymous reviewers on a previous version of this article were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laëtitia Bréchet.

Additional information

Responsible Editor: Katja Klumpp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bréchet, L., Ponton, S., Alméras, T. et al. Does spatial distribution of tree size account for spatial variation in soil respiration in a tropical forest?. Plant Soil 347, 293–303 (2011). https://doi.org/10.1007/s11104-011-0848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-011-0848-1

Keywords

Navigation