Skip to main content
Log in

A study of soil methane sink regulation in two grasslands exposed to drought and N fertilization

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Oxidation by soil bacteria is the only biological sink for atmospheric methane (CH4). There are substantial uncertainties regarding the global size of this sink, in part because the ecological controls of the involved processes are not well understood to date. We have investigated effects of severe summer drought and of nitrogen inputs (ammonium nitrate or cattle urine) on soil CH4 fluxes in a field experiment. Soil moisture was the most important factor regulating the temporal dynamics of CH4 fluxes. Simulated drought episodes altered the soil’s water balance throughout the year, increasing CH4 oxidation by 50% on an annual basis. N fertilizers exerted only small and transient effects at the ecosystem level. Laboratory incubations suggested that effects differed between soil layers, with larger effects of drought and N application in the top soil than in deeper layers. With soil moisture being the primary controlling factor of methanotrophy, a detailed understanding of the ecosystem’s water balance is required to predict CH4 budgets under future climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  PubMed  CAS  Google Scholar 

  • Bodelier PLE, Roslev P, Henckel T, Frenzel P (2000) Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature 403:421–424

    Article  PubMed  CAS  Google Scholar 

  • Borken W, Davidson EA, Savage K, Sundquist ET, Steudler P (2006) Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biol Biochem 38:1385–1395

    Article  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol Fertil Soils 17:263–268

    Article  CAS  Google Scholar 

  • Bronswijk JJB (1988) Modeling of water-balance, cracking and subsidience of clay soils. J Hydrol 97:199–212

    Article  Google Scholar 

  • Castro MS, Melillo JM, Steudler PA, Chapman JW (1994) Soil moisture as a predictor of methane uptake by temperate forest soils. Can J For Res 24:1805–1810

    Article  CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Env Microbiol Rep 1:285–292

    Article  CAS  Google Scholar 

  • Davidson EA, Nepstad DC, Ishida FY, Brando PM (2008) Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob Change Biol 14:2582–2590

    Article  Google Scholar 

  • Degelmann DM, Borken W, Kolb S (2009) Methane oxidation kinetics differ in European beech and Norway spruce soils. Eur J Soil Sci 60:499–506

    Article  CAS  Google Scholar 

  • Dekker LW, Ritsema CJ (1994) How water moves in a water repellent sandy soil 1. Potential and actual water repellency. Water Resour Res 30:2507–2517

    Article  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Potter CS, Borken W, Brumme R, Butterbach-Bahl K, Crill PM, Dobbie K, Smith KA (2000) General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Glob Biogeochem Cycles 14:999–1029

    Article  Google Scholar 

  • Dobbie KE, Smith KA (1996) Comparison of CH4 oxidation rates in woodland, arable and set aside soils. Soil Biol Biochem 28:1357–1365

    Article  CAS  Google Scholar 

  • Doerr SH, Thomas AD (2000) The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. J Hydrol 231:134–147

    Article  Google Scholar 

  • Dörr H, Katruff L, Levin I (1993) Soil texture parameterization of the methane uptake in aerated soils. Chemosphere 26:697–713

    Article  Google Scholar 

  • Dunfield PF (2007) The soil methane sink. In: Reay D, Hewitt CN, Smith K, Grace J (eds) Greeenhouse gas sinks. CAB International, Wallingford, pp 152–170

    Chapter  Google Scholar 

  • Dunfield P, Knowles R (1995) Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol. Appl Environ Microbiol 61:3129–3135

    PubMed  CAS  Google Scholar 

  • Fiedler S, Lamers M, Ingwersen J, Streck T, Stahr K, Jungkunst HF (2008) Impact of the heatwave in 2003 on the summer CH4 budget of a spruce forest with large variation in soil drainage: a four-year comparison (2001–2004). J Plant Nutr Soil Sci 171:666–671

    Article  CAS  Google Scholar 

  • Gilgen AK, Buchmann N (2009) Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosci 6:2525–2539

    Article  Google Scholar 

  • Gulledge J, Schimel JP (1998) Low-concentration kinetics of atmospheric CH4 oxidation in soil and mechanism of NH +4 inhibition. Appl Environ Microbiol 64:4291–4298

    PubMed  CAS  Google Scholar 

  • Gulledge J, Doyle AP, Schimel JP (1997) Different NH4+-inhibition patterns of soil CH4 consumption: a result of distinct CH4-oxidizer populations across sites? Soil Biol Biochem 29:13–21

    Article  CAS  Google Scholar 

  • Haynes RJ, Williams PH (1992) Changes in soil solution composition and pH in urine affected areas of pasture. J Soil Sci 43:323–334

    Article  CAS  Google Scholar 

  • Haynes RJ, Williams PH (1993) Nutrient cycling and soil fertility in the grazed pasture ecosystem. Adv Agron 49:119–199

    Article  CAS  Google Scholar 

  • Hütsch BW, Webster CP, Powlson DS (1993) Long-term effects of nitrogen-fertilization on methane oxidation in soil of the Broadbalk Wheat Experiment. Soil Biol Biochem 25:1307–1315

    Article  Google Scholar 

  • Hütsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soil as affected by land-use, soil pH and N fertilization. Soil Biol Biochem 26:1613–1622

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • King GM, Schnell S (1998) Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Appl Environ Microbiol 64:253–257

    PubMed  CAS  Google Scholar 

  • Kruse CW, Moldrup P, Iversen N (1996) Modeling diffusion and reaction in soils: II. Atmospheric methane diffusion and consumption in a forest soil. Soil Sci 161:355–365

    Article  CAS  Google Scholar 

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol 37:25–50

    Article  Google Scholar 

  • Lessard R, Rochette P, Gregorich EG, Desjardins RL, Pattey E (1997) CH4 fluxes from a soil amended with dairy cattle manure and ammonium. Can J Soil Sci 77:179–186

    CAS  Google Scholar 

  • Li Z, Kelliher FM (2007) Methane oxidation in freely and poorly drained grassland soils and effects of cattle urine application. J Environ Qual 36:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Liebig MA, Kronberg SL, Gross JR (2008) Effects of normal and altered cattle urine on short-term greenhouse gas flux from mixed-grass prairie in the Northern Great plains. Agric Ecosyst Environ 125:57–64

    Article  CAS  Google Scholar 

  • Mosier A, Schimel D, Valentine D, Bronson K, Parton W (1991) Metha ne and nitrous oxide fluxes in nature, fertilized and cultivated grasslands. Nature 350:330–332

    Article  CAS  Google Scholar 

  • Nesbit SP, Breitenbeck GA (1992) A laboratory study of factors influencing methane uptake by soils. Agric Ecosyst Environ 41:39–54

    Article  CAS  Google Scholar 

  • Powlson DS, Goulding KWT, Willison TW, Webster CP, Hütsch BW (1997) The effect of agriculture on methane oxidation in soil. Nutr Cycl Agroecosyst 49:59–70

    Article  CAS  Google Scholar 

  • Price SJ, Sherlock RR, Kelliher FM, McSeveny TM, Tate KR, Condron LM (2004) Pristine New Zealand forest soil is a strong methane sink. Glob Change Biol 10:16–26

    Article  Google Scholar 

  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ritchie JT, Adams JE (1974) Field measurements of evapotranspiration from soil shrinkage cracks. Soil Sci Soc Am J 38:131–134

    Article  Google Scholar 

  • Smith KA, Dobbie KE, Ball BC, Bakken LR, Sitaula BK, Hansen S, Brumme R, Borken W, Christensen S, Prieme A, Fowler D, Macdonald JA, Skiba U, Klemedtsson L, Kasimir-Klemedtsson A, Degorska A, Orlanski P (2000) Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob Change Biol 6:791–803

    Article  Google Scholar 

  • Steinkamp R, Butterbach-Bahl K, Papen H (2001) Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biol Biochem 33:145–153

    Article  CAS  Google Scholar 

  • Willison TW, Webster CP, Goulding KWT, Powlson DS (1995) Methane oxidation in temperate soils: effects of land use and the chemical form of nitrogen fertilizer. Chemosphere 30:539–546

    Article  CAS  Google Scholar 

  • Zeeman MJ, Hiller R, Gilgen AK, Michna P, Plüss P, Buchmann N, Eugster W (2010) Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agric For Meteorol 150:519–530

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Petra A. Braun for discussions and helpful comments on this manuscript. Two anonymous reviewers provided helpful comments on an earlier version of this manuscript. Matthias Zeeman provided precipitation data for both field sites. We are further indebted to Annika Lenz, Peter Plüss and Patrick Flütsch for technical support, Anna Gilgen, Samuel Schmid and Petra Braun helped with the set up of the rain exclusion roofs. This project was funded by Swiss National Science Foundation grant 315230-112681 to PAN. The project was conceived by PAN, the field experiment designed and implemented by AAH and PAN and written up by AAH and PAN with input from NB. AAH gratefully acknowledges a scholarship from ETH Zurich for financial support that allowed the completion of this manuscript. PAN acknowledges founding by TUMSS (Towards the Understanding of Methane Sinks and Sources), a project of ETH’s School domain of Earth, Environment and Natural Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal A. Niklaus.

Additional information

Responsible Editor: Paul Bodelier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 5.77 mb)

Online Resource 2

(XLS 329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, A.A., Buchmann, N. & Niklaus, P.A. A study of soil methane sink regulation in two grasslands exposed to drought and N fertilization. Plant Soil 342, 265–275 (2011). https://doi.org/10.1007/s11104-010-0690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0690-x

Keywords

Navigation