Skip to main content
Log in

Correlation between leaf litter and fine root decomposition among subtropical tree species

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Elucidating the processes of leaf litter and fine root decomposition has been a major research focus, while how the correlation between leaf litter and fine root decomposition is unclear. We studied the in situ decomposition and N dynamics of leaf litter and fine root of four subtropical tree species (Pinus massoniana, Castanopsis hystrix, Michelia macclurei and Mytilaria laosensis) to determine whether leaf litter and fine root decomposition is correlated across species as well as which factors influence decomposition above versus below ground. Decomposition rate of leaf litter was related to that of fine root across species. The strong correlation between leaf litter and fine root decomposition rates arose largely for several reasons. First, soil moisture had the similar influences on both leaf litter and fine root decomposition rates. Second, traits (i.e., initial Ca concentration) important to both leaf litter and fine root decomposition rates showed significant similarity among species. Third, initial P, N and aromatic C concentrations, and C/N ratio were uniquely important for fine root decomposition rate, while no unique traits for leaf litter decomposition rate. This also could account for the strong correlation between leaf litter and fine root decomposition rates. Our study suggests that among these subtropical trees, species effects on in situ decomposition rates of leaf litter and fine root are very similar. Thus, species differences in decomposition rates may be as large as they would be if faster decomposition of leaf litter was correlated with faster decomposition of fine root. N immobilization rate of leaf litter was unrelated to that of fine root across species. Our results help explain some important mechanisms by which tree species influence litter in situ decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot 68:2201–2208. doi:10.1139/b90-287

    Article  Google Scholar 

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burkes IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Global Change Biol 14:2636–2660. doi:10.1111/j.1365-2486.2008.01674.x

    Google Scholar 

  • Bloomfield J, Vogt KA, Vogt DJ (1993) Decay rate and substrate quality of fine roots and foliage of 2 tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant Soil 150:233–245. doi:10.1007/BF00013020

    Article  CAS  Google Scholar 

  • Bloomfield J, Vogt KA, Wargo PM (1996) Tree root turnover and senescence. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Dekker, New York, pp 363–381

    Google Scholar 

  • Borken W, Beese F (2006) Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce. Eur J Soil Sci 57:617–625. doi:10.1111/j.1365-2389.2005.00752.x

    Article  CAS  Google Scholar 

  • Bremner JM (1996) Nitrogen-total. In: Sparks DL (ed) Methods of soil analysis. SSSA Book Ser, Madison, pp 1085–1122

    Google Scholar 

  • Carnevalea NJ, Montagnini F (2002) Facilitating regeneration of secondary forests with the use of mixed and pure plantations of indigenous tree species. For Ecol Manage 163:217–227. doi:10.1016/S0378-1127(01)00581-3

    Article  Google Scholar 

  • Cleveland CC, Neff JC, Townsend AR, Hood E (2004) Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems 7:275–285. doi:10.1007/s10021-003-0236-7

    Article  CAS  Google Scholar 

  • Crossley DAJ, Hoglund MP (1962) A litterbag method for the study of microarthropods inhabiting leaf litter. Ecology 43:571–573. doi:10.2307/1933396

    Article  Google Scholar 

  • Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, The TLIDET Team (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Global Change Biol 15:1339–1355. doi:10.1111/j.1365-2486.2008.01781.x

    Article  Google Scholar 

  • Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000) Building roots in a changing environment: implications for root longevity. New Phytol 147:33–42. doi:10.1111/j.1469-8137.2000.00686.x

    Article  CAS  Google Scholar 

  • FAO (2007) State of The World’s Forests 2007. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Gholz HL, Wedin DA, Smitherman SM (2000) Long-term dynamics of pine and litter decomposition in contrasting environments: towards a global model of decomposition. Global Change Biol 6:751–765. doi:10.1046/j.1365-2486.2000.00349.x

    Article  Google Scholar 

  • Gijsman AJ, Alarcón HF, Thomas RJ (1997) Root decomposition in tropical grasses and legumes, as affected by soil texture and season. Soil Biol Biochem 29:1443–1450. doi:10.1016/S0038-0717(97)00039-4

    Article  CAS  Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31. doi:10.1111/j.1469-8137.2000.00681.x

    Article  Google Scholar 

  • Grabovich MY, Dubinina GA, Churikova VV, Churikov SN, Korovina TI (1995) Mechanisms of synthesis and utilization of oxalate inclusions in the colorless sulfur bacterium Macromonas bipunctata. Mikrobiologiya 64:630–636

    CAS  Google Scholar 

  • Guo LB, Halliday MJ, Gifford RM (2006a) Fine root decomposition under grass and pine seedlings in controlled environmental conditions. Appl Soil Ecol 33:22–29. doi:10.1016/j.apsoil.2005.09.004

    Article  Google Scholar 

  • Guo JF, Yang YS, Chen GS, Lin P, Xie JS (2006b) A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae 42:93–100

    Google Scholar 

  • Guo D, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008) Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. J Ecol 96:737–745. doi:10.1111/j.1365-2745.2008.01385.x

    Article  CAS  Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218. doi:10.1146/annurev.ecolsys.36.112904.151932

    Article  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522. doi:10.2307/2963492

    Article  Google Scholar 

  • Hobbie SE, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–1877. doi:10.1890/0012-9658(2000)081[1867:NLODIH]2.0.CO;2

    Article  Google Scholar 

  • Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Trees species effects on decomposition and forest floor dynamics in a common garden. Ecology 87:2288–2297. doi:10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Hobbie SE, Oleksyn J, Eissenstat DM, Reich PB (2010) Fine root decomposition rates do not mirror those of leaf litter among temperate tree species. Oecologia 162:505–513. doi:10.1007/s00442-009-1479-6

    Article  PubMed  Google Scholar 

  • Jansson PE, Berg B (1985) Temporal variation of litter decomposition in relation to simulated soil climate. Long-term decomposition in a Scots pine forest V. Can J Bot 63:1008–1016. doi:10.1139/b85-136

    Article  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312. doi:10.1890/02-0282

    Article  Google Scholar 

  • Liang RL (2007) Current situation of Guangxi indigenous broadleaf species resource and their development counter-measures. Guangxi Forestry Science 36:5–9

    Google Scholar 

  • Liang RL, Wen HH (1992) Application of fertilizers in Pinus massoniana plantations in Dapingshan. Guangxi Province Forest Research 5:138–142

    Google Scholar 

  • McClaugherty C, Berg B (1987) Cellulose, lignin, and nitrogen concentrations as rate regulating factors in late stage of forest litter decomposition. Pedobiologia 30:101–112

    CAS  Google Scholar 

  • Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59:465–472. doi:10.2307/1936576

    Article  CAS  Google Scholar 

  • Mo JM, Brown S, Xue JH, Fang YT, Li ZA (2006) Response of litter decomposition to simulated nitrogen deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant Soil 285:135–151. doi:10.1007/s11104-005-5446-7

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: second ed, Page A.L. et al., Ed. Agronomy, Methods of soil analysis, Part 2 American Society of Agronomy Inc., Madison, Wisconsin, pp 961–1010

  • Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004) Fine root production dominates the response of a deciduous forest to atmospheric CO2 enrichment. Proc Natl Acad Sci 101:9689–9693. doi:10.1073/pnas.0403491101

    Article  CAS  PubMed  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331. doi:10.2307/1932179

    Article  Google Scholar 

  • Ostertag R, Marín-Spiotta E, Silver WL, Schulten J (2008) Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 11:701–714. doi:10.1007/s10021-008-9152-1

    Article  CAS  Google Scholar 

  • Paquette A, Messier C (2010) The role of plantations in managing the world’s forests in the Anthropocene. Front Ecol Environ 8:27–34. doi:10.1890/080116

    Article  Google Scholar 

  • Reich PB, Buschena C, Tjoelker MG, Wrage K, Knops J, Tilman D, Machado JL (2003) Variation in growth rate and ecophysiology among 34 grassland and savanna species under contrasting N supply: a test of functional group differences. New Phytol 157:617–631. doi:10.1046/j.1469-8137.2003.00703.x

    Article  Google Scholar 

  • Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Can J For Res 20:166–171. doi:10.1139/x90-023

    Article  Google Scholar 

  • Schmidt MWI, Knicker H, Hatcher PG, Kögel-Knabner I (1997) Improvement of 13C and 15N CPMAS NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10% hydrofluoric acid. Eur J Soil Sci 48:319–328. doi:10.1111/j.1365-2389.1997.tb00552.x

    Article  Google Scholar 

  • Schuur EAG (2001) The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems 4:259–273. doi:10.1007/s10021-001-0008-1

    Article  CAS  Google Scholar 

  • Scott NA, Binkley D (1997) Foliage litter quality and annual net N mineralization: comparison across North American forest sites. Oecologia 111:151–159. doi:10.1007/s004420050219

    Article  Google Scholar 

  • SFA (State Forestry Administration) (2007) China’s Forestry 1999–2005. China Forestry Publishing House, Beijing

    Google Scholar 

  • Silver WL, Miya RK (2001) Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129:407–419. doi:10.1007/s004420100740

    Google Scholar 

  • Sinsabaugh R, Antibus R, Linkins A (1993) Wood decomposition: Nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74:1586–1593. doi:10.2307/1940086

    Article  CAS  Google Scholar 

  • Soil Survey Staff of USDA (2006) Keys to soil taxonomy. United States Department of Agriculture (USDA), Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • State Soil Survey Service of China (1998) China Soil. China Agricultural Press, Beijing

    Google Scholar 

  • Steinberger Y, Degani R, Bamess G (1995) Decomposition of root fitter and related microbial population dynamics of a Negev desert shrub, Zygophyllum dumosum. J Arid Environ 31:383–399. doi:10.1016/S0140-1963(05)80122-3

    Article  Google Scholar 

  • Tang XL, Liu SG, Zhou GY, Zhang DQ, Zhou CY (2006) Soil atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biol 12:546–560. doi:10.1111/j.1365-2486.2006.01109.x

    Article  Google Scholar 

  • Taylor BR, Prescott CE, Parsons WFJ, Parkinson D (1991) Substrate control of litter decomposition in four Rocky Mountain coniferous forests. Can J Bot 69:2242–2250. doi:10.1139/b91-281

    Article  Google Scholar 

  • Vivanco L, Austin AT (2006) Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150:97–107. doi:10.1007/s00442-006-0495-z

    Article  PubMed  Google Scholar 

  • Wieder RK, Wright SJ (1995) Tropical forest litter dynamics and season irrigation on Barro Colorade Island, Panama. Ecology 76:1971–1979

    Article  Google Scholar 

  • Xu XN, Hirata EJ (2005) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil 273:279–289. doi:10.1007/s11104-004-8069-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Wei Zhang, Dr. Zuomin Shi, Dr. Pengsen Sun, the section editor (Dr. Alfonso Escudero), and two anonymous reviewers for their valuable comments and suggestions on the manuscript. We are grateful to Riming He, Ji Zeng, Angang Ming and Jixin Tang for their help with field sampling. We also gratefully acknowledge the support from the Experimental Center of Tropical Forestry, the Chinese Academy of Forestry. This study was funded by China’s National Natural Science Foundation (No. 30590383) and the Ministry of Finance (No. 200804001) and the Ministry of Science and Technology (No. 2006BAD03A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirong Liu.

Additional information

Responsible Editor: Alfonso Escudero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, S. & Mo, J. Correlation between leaf litter and fine root decomposition among subtropical tree species. Plant Soil 335, 289–298 (2010). https://doi.org/10.1007/s11104-010-0415-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0415-1

Keywords

Navigation