Skip to main content

Advertisement

Log in

Plant–rhizobia mutualism influences aphid abundance on soybean

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The mutualism between legumes and nitrogen-fixing soil bacteria (rhizobia) is a key feature of many ecological and agricultural systems, yet little is known about how this relationship affects aboveground interactions between plants and herbivores. We investigated the effects of the rhizobia mutualism on the abundance of a specialized legume herbivore on soybean plants. In a field experiment, soybean aphid (Aphis glycines) abundances were measured on plants (Glycine max) that were either (1) treated with a commercial rhizobial inoculant, (2) associating solely with naturally occurring rhizobia, or (3) given nitrogen fertilizer. Plants associating with naturally occurring rhizobia strains exhibited lower aphid population densities compared to those inoculated with a commercial rhizobial preparation or given nitrogen fertilizer. Genetic analyses of rhizobia isolates cultured from field plants revealed that the commercial rhizobia strains were phylogenetically distinct from naturally occurring strains. Plant size, leaf nitrogen concentration, and nodulation density were similar among rhizobia-associated treatments and did not explain the observed differences in aphid abundance. Our results demonstrate that plant–rhizobia interactions influence plant resistance to insect herbivores and that some rhizobia strains confer greater resistance to their mutualist partners than do others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CR:

commercial rhizobia

DAP:

days after planting

F:

fertilized (with N)

N:

nitrogen

NR:

naturally occurring rhizobia

References

  • Albrecht SL, Maier RJ, Hanus FJ, Russell SA, Emerich DW, Evans HJ (1979) Hydrogenase in Rhizobium japonicum increases nitrogen-fixation by nodulated soybeans. Science 203:1255–1257

    Article  CAS  PubMed  Google Scholar 

  • Amarger N (2001) Rhizobia in the field. Adv Agron 73:109–168

    Article  CAS  Google Scholar 

  • Barcellos F, Menna P, Batista J, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643

    Article  CAS  PubMed  Google Scholar 

  • Batista J, Hungria M, Barcellos F, Ferreira M, Mendes I (2007) Variability in Bradyrhizobium japonicum and B. elkanii seven years after introduction of both the exotic microsymbiont and the soybean host in a cerrados soil. Microb Ecol 53:270–284

    Article  PubMed  Google Scholar 

  • Beegle DB (2007) The agronomy guide: soil fertility management. The Pennsylvania State University, University Park

    Google Scholar 

  • Bennett A, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218

    Article  PubMed  Google Scholar 

  • Bi J, Felton GW (1995) Foliar oxidative stress and insect herbivory—primary compounds, secondary metabolites, and reactive oxygen species as components of induced resistance. J Chem Ecol 21:1511–1530

    Article  CAS  Google Scholar 

  • Bi J, Felton G, Mueller A (1994) Induced resistance in soybean to Helicoverpa zea—role of plant protein-quality. J Chem Ecol 20:183–198

    Article  CAS  Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534–542

    Article  Google Scholar 

  • Briggs MA (1990) Chemical defense production in Lotus corniculatus L. 1. The effects of nitrogen-source on growth, reproduction and defense. Oecologia 83:27–31

    Article  Google Scholar 

  • Burdon JJ, Gibson AH, Searle SD, Woods MJ, Brockwell J (1999) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian Acacia: within-species interactions. J Appl Ecol 36:398–408

    Article  Google Scholar 

  • Chau A, Heinz K, Davies F (2005) Influences of fertilization on Aphis gossypii and insecticide usage. J Appl Entomol 129:89–97

    Article  CAS  Google Scholar 

  • De Moraes CM, Lewis WJ, Pare PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  Google Scholar 

  • Denton M, Coventry D, Murphy P, Howieson J, Bellotti W (2002) Competition between inoculant and naturalised Rhizobium leguminosarum bv. trifolii for nodulation of annual clovers in alkaline soils. Aust J Agric Res 53:1019–1026

    Article  CAS  Google Scholar 

  • Doyle J (1998) Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria. Trends Plant Sci 3:473–478

    Article  Google Scholar 

  • Edwards O, Singh K (2006) Resistance to insect pests: what do legumes have to offer? Euphytica 147:273–285

    Article  Google Scholar 

  • Ferreira MC, Hungria M (2002) Recovery of soybean inoculant strains from uncropped soils in Brazil. Field Crops Res 79:139–152

    Article  Google Scholar 

  • Fuhrmann J (1989) Serological distribution of Bradyrhizobium japonicum as influenced by soybean cultivar and sampling location. Soil Biol Biochem 21:1079–1081

    Article  Google Scholar 

  • Fuhrmann J (1990) Symbiotic effectiveness of indigenous soybean Bradyrhizobia as related to serological, morphological, rhizobitoxine, and hydrogenase phenotypes. Appl Environ Microbiol 56:224–229

    PubMed  CAS  Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051–1055

    Article  Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79–87

    Article  Google Scholar 

  • Goverde M, van der Heijden M, Wiemken A, Sanders I, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369

    Article  Google Scholar 

  • Herridge D, Peoples M, Boddey R (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Johnson N, Bentley BL (1991) Symbiotic N2-fixation and the elements of plant resistance to herbivores: lupine alkaloids and tolerance to defloiation. In: Barbosa P, Krischik V, Jones C (eds) Microbial mediation of plant–herbivore interactions. Wiley, New York, pp 45–64

    Google Scholar 

  • Johnson ND, Liu B, Bentley BL (1987) The effects of nitrogen fixation, soil nitrate, and defoliation on the growth, alkaloids, and nitrogen levels of Lupinus succulentus (Fabaceae). Oecologia 74:425–431

    Article  Google Scholar 

  • Keyser HH, Weber DF, Uratsu SL (1984) Rhizobium japonicum serogroup and hydrogenase phenotype distribution in 12 states. Appl Environ Microbiol 47:613–615

    CAS  PubMed  Google Scholar 

  • Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–rhizobium mutualism. Nature 425:78–81

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Kwon SW, Park JY, Kim JS, Kang JW, Cho YH, Lim CK, Parker MA, Lee GB (2005) Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int J Syst Evol Microbiol 55:263–270

    Article  CAS  PubMed  Google Scholar 

  • Lafavre JS, Eaglesham ARJ (1986) Rhizobitoxine—a phytotoxin of unknown function which is commonly produced by Bradyrhizobia. Plant Soil 92:443–452

    Article  CAS  Google Scholar 

  • Layton MB, Boethel DJ (1987) Reduction in N-2 fixation by soybean in response to insect-induced defoliation. J Econ Entomol 80:1319–1324

    CAS  Google Scholar 

  • Li Y, Hill C, Carlson S, Diers B, Hartman G (2006) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Mol Breed 19:25–34

    Article  CAS  Google Scholar 

  • Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Ann Rev Ecolog Syst 11:119–161

    Article  Google Scholar 

  • Moran P, Thompson JF (2001) Molecular responses to aphid feeding in arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Nunez-Farfan J, Fornoni J, Valverde P (2007) The evolution of resistance and tolerance to herbivores. Annu Rev Ecol Evol 38:541–566

    Article  Google Scholar 

  • Obaton M, Bouniols A, Piva G, Vadez V (2002) Are Bradyrhizobium japonicum stable during a long stay in soil? Plant Soil 245:315–326

    Article  CAS  Google Scholar 

  • Parker MA (1995) Plant fitness variation caused by different mutualist genotypes. Ecology 76:1525–1535

    Article  Google Scholar 

  • Ragsdale DW, Hodgson EW, Hunt TE, Mccornack BP, O’Neal ME, Glogoza PA, Venette RC, Johnson KD, Cullen EM, Potter BD, O’Neil RJ, Macrae IV, Difonzo CD (2007) Economic threshold for soybean aphid (Hemiptera: Aphididae). J Econ Entomol 100:1258–1267

    Article  CAS  PubMed  Google Scholar 

  • Rutz C, Hugentobler U, Chi H, Baumgartner J, Oertli J (1990) Energy-flow in an apple plant–aphid (Aphis pomi Degeer) (Homoptera, Aphididae) ecosystem, with respect to nitrogen-fertilization. Plant Soil 124:273–279

    Article  CAS  Google Scholar 

  • Schutz K, Bonkowski M, Scheu S (2008) Effects of Collembola and fertilizers on plant performance (Triticum aestivum) and aphid reproduction (Rhopalosiphum padi). Basic Appl Ecol 9:182–188

    Article  Google Scholar 

  • Sirur GM, Barlow CA (1984) Effects of pea aphids (Homoptera, Aphididae) on the nitrogen-nixing activity of bacteria in the root-nodules of pea plants. J Econ Entomol 77:606–611

    Google Scholar 

  • Smith C, Boyko E (2007) The molecular bases of plant resistance and defense responses to aphid feeding: current status. Entomol Exp Appl 122:1–16

    Article  CAS  Google Scholar 

  • Spratt BG, Maiden MCJ (1999) Bacterial population genetics, evolution and epidemiology. Philos Trans R Soc Lond B Biol Sci 354:701–710

    Article  CAS  PubMed  Google Scholar 

  • Streeter JG (1994) Failure of inoculant rhizobia to overcome the dominance of indigenous strains for nodule formation. Can J Microbiol 40:513–522

    Article  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene-transfer in the environment. Proc Natl Acad Sci USA 92:8985–8989

    Article  CAS  PubMed  Google Scholar 

  • Taylor RW, Williams ML, Sistani KR (1991) N-2 fixation by soybean Bradyrhizobium combinations under acidity, low-P and high-Al stresses. Plant Soil 131:293–300

    Article  CAS  Google Scholar 

  • Thies JE, Singleton PW, Benbohlool B (1991) Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field-grown legumes. Appl Environ Microbiol 57:19–28

    PubMed  CAS  Google Scholar 

  • Thrall P, Slattery J, Broadhurst L, Bickford S (2007) Geographic patterns of symbiont abundance and adaptation in native Australian Acacia–rhizobia interactions. J Ecol 95:1110–1122

    Article  Google Scholar 

  • Tintjer T, Rudgers J (2006) Grass–herbivore interactions altered by strains of a native endophyte. New Phytol 170:513–521

    Article  PubMed  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    Article  CAS  PubMed  Google Scholar 

  • Underwood N, Morris W, Gross K, Lockwood JR (2000) Induced resistance to Mexican bean beetles in soybean: variation among genotypes and lack of correlation with constitutive resistance. Oecologia 122:83–89

    Article  Google Scholar 

  • van Berkum P, Fuhrmann JJ (2000) Evolutionary relationships among the soybean bradyrhizobia reconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evol Microbiol 50:2165–2172

    PubMed  Google Scholar 

  • van Berkum P, Sloger C, Weber DF, Cregan PB, Keyser HH (1985) Relationship between ureide N and N2 fixation, aboveground N accumulation, acetylene-reduction, and nodule mass in greenhouse and field studies with Glycine max L (Merr). Plant Physiol 77:53–58

    Article  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacteria. Blackwell Scientific, Oxford, UK

    Google Scholar 

  • Wang H, Man CX, Wang ET, Chen WX (2009) Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem. Plant Soil 314:169–182

    Article  CAS  Google Scholar 

  • Weber DF, Keyser HH, Uratsu SL (1989) Serological distribution of Bradyrhizobium japonicum from United States soybean production areas. Agron J 81:786–789

    Article  Google Scholar 

  • Wheater CP, Cook PA (2000) Using statistics to understand the environment. Routledge, London

    Google Scholar 

  • Willems A, Coopman R, Gillis M (2001) Comparison of sequence analysis of 16S–23S rDNA spacer regions, AFLP analysis and DNA–DNA hybridizations in Bradyrhizobium. Int J Syst Evol Microbiol 51:623–632

    CAS  PubMed  Google Scholar 

  • Wilson KG, Stinner RE (1984) A potential influence of rhizobium activity on the availability of nitrogen to legume herbivores. Oecologia 61:337–341

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Geib for sequencing help; S. Smiles and V. Houck for farm assistance; J. Saunders, C. Wagner, and A. Conrad for logistical support, J. Zhu for help with the statistical analyses; P. van Berkum for USDA cultures; J. Tumlinson, J. Tooker, C. Frost, and J. Thaler for helpful comments on the manuscript. This research was supported by the David and Lucile Packard Foundation, the Beckman Foundation, and the Du Pont young investigator award. J. Dean was supported under a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo M. De Moraes.

Additional information

Responsible Editor: Juha Mikola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, J.M., Mescher, M.C. & De Moraes, C.M. Plant–rhizobia mutualism influences aphid abundance on soybean. Plant Soil 323, 187–196 (2009). https://doi.org/10.1007/s11104-009-9924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-9924-1

Keywords

Navigation