Skip to main content
Log in

DART: a software to analyse root system architecture and development from captured images

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Image analysis is used in numerous studies of root system architecture (RSA). To date, fully automatic procedures have not been good enough to completely replace alternative manual methods. DART (Data Analysis of Root Tracings) is freeware based on human vision to identify roots, particularly across time-series. Each root is described by a series of ordered links encapsulating specific information and is connected to other roots. The population of links constitutes the RSA. DART creates a comprehensive dataset ready for individual or global analyses and this can display root growth sequences along time. We exemplify here individual tomato root growth response to shortfall in solar radiation and we analyse the global distribution of the inter-root branching distances. DART helps in studying RSA and in producing structured and flexible datasets of individual root growth parameters. It is written in JAVA and relies on manual procedures to minimize the risks of errors and biases in datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Armengaud P, Zambaux K, Hills A, Sulpice R, Pattison RJ, Blatt MR, Amtmann A (2009) EZ-RHIZO: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956. doi:10.1111/j.1365-313X.2008.03739.x

    Article  CAS  PubMed  Google Scholar 

  • Berntson GM (1997) Topological scaling and plant root system architecture: developmental and functional hierarchies. New Phytol 135:621–634. doi:10.1046/j.1469-8137.1997.00687.x

    Article  Google Scholar 

  • Boukcim H, Pagès L, Mousain D (2006) Local NO -3 or NH +4 supply modifies the root system architecture of Cedrus atlantica seedlings grown in a split-root device. J Plant Physiol 163:1293–1304. doi:10.1016/j.jplph.2005.08.011

    Article  CAS  PubMed  Google Scholar 

  • Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196. doi:10.1023/A:1014905104017

    Article  CAS  Google Scholar 

  • Cahn MD, Zobel RW, Bouldin DR (1989) Relationship between root elongation rate and diameter and duration of growth of lateral roots of maize. Plant Soil 119:271–279. doi:10.1007/BF02370419

    Article  Google Scholar 

  • Cheng W, Coleman DC, Box JE Jr (1991) Measuring root turnover using the minirhizotron technique. Agric Ecosyst Environ 34:261–267. doi:10.1016/0167-8809(91)90113-C

    Article  Google Scholar 

  • Colin-Belgrand M, Joannes H, Dreyer E, Pagès L, suppl (1989) A new data processing system for root growth and ramification analysis: description of methods. Ann Sci For 46:305s–309s. doi:10.1051/forest:19890570

    Article  Google Scholar 

  • Costa C, Dwyer LM, Hamel C, Muamba DF, Wang XL, Nantais L, Smith DL (2001) Root contrast enhancement for measurement with optical scanner-based image analysis. Can J Botany-Revue Canadienne Botanique 79:23–29. doi:10.1139/cjb-79-1-23

    Article  Google Scholar 

  • Danjon F, Reubens B (2008) Assessing and analyzing 3D architecture of woody root systems, a review of methods and applications in tree and soil stability, resource acquisition and allocation. Plant Soil 303:1–34. doi:10.1007/s11104-007-9470-7

    Article  CAS  Google Scholar 

  • Devienne-Baret F, Richard-Molard C, Chelle M, Maury O, Ney B (2006) Ara-rhizotron: An effective culture system to study simultaneously root and shoot development of Arabidopsis. Plant Soil 280:253–266. doi:10.1007/s11104-005-3224-1

    Article  CAS  Google Scholar 

  • Fitter AH (1986) The topology and geometry of plant-root systems - influence of watering rate on root-system topology in Trifolium pratense. Ann Bot (Lond) 58:91–101

    Google Scholar 

  • Fitter AH (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77

    Google Scholar 

  • Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant-root systems. 1. Architectural correlates of exploitation efficiency. New Phytol 118:375–382. doi:10.1111/j.1469-8137.1991.tb00018.x

    Article  Google Scholar 

  • Godin C (2000) Representing and encoding plant architecture: a review. Ann Sci For 57:413–438. doi:10.1051/forest:2000132

    Article  Google Scholar 

  • Himmelbauer ML, Loiskandl W, Kastanek F (2004) Estimating length, average diameter and surface area of roots using two different Image analyses systems. Plant Soil 260:111–120. doi:10.1023/B:PLSO.0000030171.28821.55

    Article  CAS  Google Scholar 

  • Iijima M, Oribe Y, Horibe Y, Kono Y (1998) Time lapse analysis of root elongation rates of rice and sorghum during day and night. Ann Bot (Lond) 81:603–607. doi:10.1006/anbo.1998.0611

    Article  Google Scholar 

  • Ingram KT, Leers GA (2001) Software for Measuring Root Characters from Digital Images. Agron J 93:918–922

    Article  Google Scholar 

  • Johnson MG, Tingey DT, Phillips DL, Storm MJ (2001) Advancing fine root research with minirhizotrons. Environ Exp Bot 45:263–289. doi:10.1016/S0098-8472(01)00077-6

    Article  PubMed  Google Scholar 

  • Kimura K, Kikuchi S, Yamasaki S (1999) Accurate root length measurement by image analysis. Plant Soil 216:117–127. doi:10.1023/A:1004778925316

    Article  CAS  Google Scholar 

  • Lecompte F, Pagès L (2007) Apical diameter and branching density affect lateral root elongation rates in banana. Environ Exp Bot 59:243–251. doi:10.1016/j.envexpbot.2006.01.002

    Article  Google Scholar 

  • McCrady RL, Comerford NB (1998) Morphological and anatomical relationships of loblolly pine fine roots. Trees-Structure Funct 12:431–437

    Google Scholar 

  • Ortiz-Ribbing LM, Eastburn DM (2003) Evaluation of digital image acquisition methods for determining soybean root characteristics. Crop Management, 1-9

  • Pagès L (1995) Growth-patterns of the lateral roots of young oak (Quercus robur) tree seedlings - Relationship with apical diameter. New Phytol 130:503–509. doi:10.1111/j.1469-8137.1995.tb04327.x

    Article  Google Scholar 

  • Pagès L, Bengough AG (1997) Modelling minirhizotron observations to test experimental procedures. Plant Soil 189:81–89. doi:10.1023/A:1004288430467

    Article  Google Scholar 

  • Pagès L, Vercambre G, Drouet JL, Lecompte F, Collet C, Le Bot J (2004) Root Typ: a generic model to depict and analyse the root system architecture. Plant Soil 258:103–119. doi:10.1023/B:PLSO.0000016540.47134.03

    Article  Google Scholar 

  • Russ JC (1999) The image processing handbook. CRC Press, IEEE Press, Boca Raton, Florida, USA. pp. 771

  • Ryser P (2006) The mysterious root length. Plant Soil 286:1–6. doi:10.1007/s11104-006-9096-1

    Article  CAS  Google Scholar 

  • Shabala SN, Newman IA (1997) Root nutation modelled by two ion flux-linked growth waves around the root. Physiol Plant 101:770–776. doi:10.1111/j.1399-3054.1997.tb01062.x

    Article  CAS  Google Scholar 

  • Smit AL, Zuin A (1996) Root growth dynamics of Brussels sprouts (Brassica olearacea var gemmifera) and leeks (Allium porrum L) as reflected by root length, root colour and UV fluorescence. Plant Soil 185:271–280. doi:10.1007/BF02257533

    Article  CAS  Google Scholar 

  • Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC (2000) Root methods: a handbook. Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, p 587

    Google Scholar 

  • Taub DR, Goldberg D (1996) Root system topology of plants from habitats differing in soil resource availability. Funct Ecol 10:258–264. doi:10.2307/2389851

    Article  Google Scholar 

  • Vamerali T, Ganis A, Bona S, Mosca G (1999) An approach to minirhizotron root image analysis. Plant Soil 217:183–193. doi:10.1023/A:1004616217070

    Article  Google Scholar 

  • Vamerali T, Guarise M, Ganis A, Bona S, Mosca G (2003) Analysis of root images from auger sampling with a fast procedure: a case of application to sugar beet. Plant Soil 255:387–397. doi:10.1023/A:1026147607879

    Article  CAS  Google Scholar 

  • Walter A, Spies H, Terjung S, Küsters R, Kirchgebner N, Schurr U (2002) Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. J Exp Bot 53:689–698. doi:10.1093/jexbot/53.369.689

    Article  CAS  PubMed  Google Scholar 

  • Zeng G, Birchfield ST, Wells CE (2008) Automatic discrimination of fine roots in minirhizotron images. New Phytol 177:549–557

    PubMed  Google Scholar 

  • Zobel RW (2003) Sensitivity analysis of computer-based diameter measurement from digital images. Crop Sci 43:583–591

    Google Scholar 

  • Zobel RW (2008) Hardware and software efficacy in assessment of fine root diameter distributions. Comput Electron Agric 60:178–189

    Article  Google Scholar 

  • Zobel RW, Kinraide TB, Baligar VC (2007) Fine root diameters can change in response to changes in nutrient concentrations. Plant Soil 297:243–254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. D. J. Pilbeam (University of Leeds, UK) and Dr. C. Jourdan (CIRAD, France) for their critical reviews and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Le Bot.

Additional information

Responsible Editor: Jonathan P. Lynch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Bot, J., Serra, V., Fabre, J. et al. DART: a software to analyse root system architecture and development from captured images. Plant Soil 326, 261–273 (2010). https://doi.org/10.1007/s11104-009-0005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-009-0005-2

Keywords

Navigation