Skip to main content
Log in

Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The effect of silicon (Si) nutrition on low-level cadmium (Cd) toxicity symptoms was investigated in hydroponically-grown rice seedlings (Oryza sativa L.). Silicon (0.0, 0.2, or 0.6 mM) was added when seedlings were 6 or 20 days old representing early (SiE) or late (SiL) Si treatment, respectively. Cadmium (0.0 or 2.5 μM) was added when seedlings were 6 days old. Measurements included generation of CO2 and light response curves; chlorophyll fluorescence analysis; growth; and tissue-element content analysis. Our results showed that low-level Cd treatment generally inhibited growth and photosynthesis. However, the addition of 0.2 or 0.6 mM SiE or SiL significantly reduced root- and leaf-Cd content. Consequently, the addition of 0.6 mM SiL significantly alleviated low-level Cd-induced inhibition of growth. Furthermore, 0.2 mM Si treatment significantly reduced g s compared to 0.0 or 0.6 mM Si without inhibiting A, especially in +Cd plants, suggesting an increase in instantaneous water-use-efficiency (IWUE). Additionally, in +Cd plants, the addition of 0.6 mM SiE significantly reduced F o but increased F v/F m, while treatment with 0.2 mM SiL significantly increased qP, suggesting an increase in light-use-efficiency. We thus, propose that 0.6 mM SiL treatment is required for the alleviation of low-level Cd-mediated growth inhibition. Furthermore, we suggest that 0.2 mM Si concentration might be close to the optimum requirement for maximum Si-induced increase in IWUE in rice plants, especially when under low-level Cd-stress. Our results also suggest that Si alleviates low-level Cd toxicity by improving light-use-efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

net CO2 assimilation rate

A max :

maximum net CO2 assimilation rate

C a :

ambient CO2 concentration

C E :

carboxylation efficiency

C i :

intercellular CO2 concentration

E :

transpiration rate

F m :

maximum chlorophyll fluorescence yield in a dark-adapted state

F o :

minimum chlorophyll fluorescence yield in a dark-adapted state

Fo/Fm:

basal quantum yield of non-photochemical processes in PS2 in a dark-adapted state

F v :

maximum variable fluorescence yield in a dark-adapted state

Fv/Fm:

quantum efficiency of open PS2 centers in a dark-adapted state

g s :

stomatal conductance rate

g smax :

maximum stomatal conductance rate

I s :

photosynthetic light-saturation point

IWUE:

instantaneous water-use-efficiency

PS:

photosystem

qN :

non-photochemical quenching coefficient in a light-adapted state

qP :

photochemical quenching coefficient in a light-adapted state

RUBISCO:

ribulose-1, 5-bisphosphate carboxylase/oxygenase

SiE :

Si was added (early) when plants were 6 days old

SiL :

Si was added (late) when plants were 20 days old

References

  • Agarie S, Uchida H, Agata W, Kubota F, Kaufman PB (1998) Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L). Plant Prod Sci 1:89–95

    Article  Google Scholar 

  • Al-aghabary K, Zhu Z, Shi Q (2004) Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. J Plant Physiol 27(12):2101–2115

    CAS  Google Scholar 

  • Atal N, Saradhi PP, Mohanty K (1991) Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of Cd: analysis of electron transport activities and changes in fluorescence yield. Plant Cell Physiol 32:943–951

    CAS  Google Scholar 

  • Bilger W, Schreiber U, Lange OL (1987) Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis in Arbutus unedo L. In: Tenhunen JD, Catarino FM, Lange OL, Oechel WC (eds) Plant response to stress. Springer, Berlin, pp 391–399

    Google Scholar 

  • Chaudhari V, Singh AL (2006) Macronutrient requirement of groundnut: effects on growth and yield components. Indian J Plant Physiol 11(4):401–409

    Google Scholar 

  • Chen Y, Huerta AJ (1997) Effects of sulfur nutrition on photosynthesis in cadmium-treated barley seedlings. J Plant Nutr 20:845–856

    CAS  Google Scholar 

  • Chien H, Wang J, Lin CC, Kao CH (2001) Cadmium toxicity of rice leaves is mediated through lipid peroxidation. Plant Growth Regul 33:205–213

    Article  CAS  Google Scholar 

  • Chugh LK, Sawhney SK (1999) Photosynthetic activities of Pisum sativum seedlings grown in the presence of cadmium. Plant Physiol Biochem 37:297–303

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochemie 88:1707–1719

    Article  CAS  Google Scholar 

  • Das P, Samantaray S, Rout GR (1998) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  Google Scholar 

  • Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531

    Article  CAS  Google Scholar 

  • Elliot CL, Snyder GH (1991) Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119

    Article  Google Scholar 

  • Epstein E (1999) Silicon - Annual review of plant physiology. Plant Mol Biol 50:641–664

    Article  CAS  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Zou C, Wang L, Zhang F (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29(9):1637–1647

    Article  CAS  Google Scholar 

  • Gong H, Zhu X, Chen K, Wang S, Zhang C (2005) Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci 169:313–321

    Article  CAS  Google Scholar 

  • Hattori T, Inanaga S, Tanimoto E, Lux A, Luxová M, Sugimoto Y (2003) Silicon-induced changes in viscoelastic properties of sorghum root cell walls. Plant Cell Physiol 44(7):743–749

    Article  PubMed  CAS  Google Scholar 

  • Hattori T, Inanaga S, Araki H, An P, Morita S, Luxová M, Lux A (2005) Application of silicon enhanced drought tolerance in Sorghum bicolor. Physiol Plant 123(4):459–466

    Article  CAS  Google Scholar 

  • Henriet C, Draye X, Oppitz I, Swennen R, Delvaux B (2006) Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant Soil 287(1–2):359–374

    Article  CAS  Google Scholar 

  • Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H (2000) Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull Environ Contam Toxicol 64:33–39

    Article  PubMed  CAS  Google Scholar 

  • Hodson MJ, Evans DE (1995) Aluminum/silicon interactions in higher plants. J Exp Bot 46:161–171

    Article  CAS  Google Scholar 

  • Horigchi T, Morita S (1987) Effect of manganese toxicity and tolerance of plants. VI. Effect of silicon on alleviation of manganese toxicity of barley. J Plant Nutr 10:2299–2310

    Google Scholar 

  • Horton P, Ruban AV (1992) Regulation of photosystem II. Photosynth Res 34:375–385

    Article  CAS  Google Scholar 

  • Hossain MT, Ryuji M, Soga K, Wakabayashi K, Kamisaka S, Fuji S, Yamamoto R, Hoson T (2002) Growth promotion and increase in cell wall extensibility by silicon in rice and some Poaceae seedlings. J Plant Res 115:23–27

    Article  PubMed  CAS  Google Scholar 

  • Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42:357–364

    Article  CAS  Google Scholar 

  • Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). J AOAC Inter 84:1984–1992

    Google Scholar 

  • Jiang Q, Roche D, Monaco TA, Hole D (2006) Stomatal conductance is a key parameter to assess limitations to photosynthesis and growth potential in barley genotypes. Plant Biol (Stuttg) 8(4):515–521

    Article  CAS  Google Scholar 

  • Jorhem L, Sundstrom B, Engman J (2001) Cadmium and other metals in Swedish wheat and rye flours: longitudinal study, 1983–1997. J AOAC Inter 84:1984–1992

    CAS  Google Scholar 

  • Kaufman PB, Takeoka Y, Carlson TJ, Bigelow WC, Jones JD, Moore PH, Ghosheh NS (1979) Studies on silica deposition in sugarcane (Saccharum spp.) using scanning electron microscopy, energy-dispersive X-ray analysis, neutron activation analysis and light microscopy. Phytomorphology 29:185–193

    Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminum resistance and silicon-induced amelioration of aluminum toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52(359):1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Yang Y, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plantar 116:368–372

    Article  CAS  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soil: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kukier U, Chaney RL (2002) Growing rice grain with controlled cadmium concentrations. J Plant Nutr 25:1793–1820

    Article  CAS  Google Scholar 

  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039

    Article  CAS  Google Scholar 

  • Li Q, Ma C, Shang Q (2007) Effects of silicon on photosynthesis and antioxidant enzymes of maize under drought stress. Yingyong Shengtai Xuebao 18(3):531–536

    PubMed  CAS  Google Scholar 

  • Liang YC (1999) Effects of silicon on enzyme activity, and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209(2):217–224

    Article  CAS  Google Scholar 

  • Liang Y, Yang C, Shi H (2001) Effects of silicon on growth and mineral composition of barley grown under toxic levels of aluminum. J Plant Nutr 24:229–243

    Article  CAS  Google Scholar 

  • Liang Y, Chen Q, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160:1157–1164

    Article  PubMed  CAS  Google Scholar 

  • Liang YC, Wong JWC, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58(4):475–483

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu Y, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Takahashi E (1990) Effect of silicon on the growth and phosphorus uptake of rice. Plant Soil 126(1):115–119

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002a) Silicon-accumulating plants in the plant kingdom. In: Ma JF, Takahashi E (eds) Soil, fertilizer, and plant silicon research in Japan, 1st edn. Elsevier Science, Amsterdam, The Netherlands, pp 63–71

    Google Scholar 

  • Ma JF, Takahashi E (2002b) Functions of silicon in plant growth. In: Ma JF, Takahashi E (eds) Soil, fertilizer, and plant silicon research in Japan, 1st edn. Elsevier Science, Amsterdam, The Netherlands, pp 107–180

    Google Scholar 

  • Ma JF, Nishimura K, Takahashi E (1989) Effect of silicon on the growth of rice plant at different growth stages. Soil Sci Plant Nutri 35(3):347–356

    CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  PubMed  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448(7150):209–212

    Article  PubMed  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  PubMed  CAS  Google Scholar 

  • McDermitt DK, Norman JM, Davis JT, Ball TM, Arkebauer TJ, Welles JM, Roemer SR (1989) CO2 response curves can be measured with a field-portable closed-loop photosynthesis system. Annu Sci For 46:416–420

    Article  Google Scholar 

  • Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice. Plant Cell Physiol 46(2):279–283

    Article  PubMed  CAS  Google Scholar 

  • Moya JL, Ros R, Picazo I (1995) Heavy metal-hormone interactions in rice plants: effects on growth, net photosynthesis, and carbohydrate distribution. J Plant Growth Reg 14:61–67

    Article  CAS  Google Scholar 

  • Neumann D, Zur Neiden U (2001) Silicon and heavy metal tolerance of higher plants. Phytochemistry 56:685–692

    Article  PubMed  CAS  Google Scholar 

  • Neumann D, Zur Neiden U, Lichenberger O, Leopold I, Schwieger W (1997) Heavy metal tolerance of Minuartia verna. J Plant Physiol 151:101–108

    CAS  Google Scholar 

  • Panković D, Plesničar M, Arsenijević-Maksimović I, Petrović N, Sakač Z, Kastori R (2000) Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Ann Bot 86(4):841–847

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548

    Article  PubMed  CAS  Google Scholar 

  • Pfundel E (1998) Estimating the contribution of photosystem 1 to total leaf chlorophyll fluorescence. Photosynth Res 56:185–195

    Article  CAS  Google Scholar 

  • Poschenrieder C, Gunse B, Barcelo J (1989) Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    PubMed  CAS  Google Scholar 

  • Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot 35:525–545

    Article  CAS  Google Scholar 

  • Rains DW, Epstein E, Zasoski RJ, Aslam M (2006) Active silicon uptake by wheat. Plant Soil 280:223–228

    Article  CAS  Google Scholar 

  • Ralph PJ, Burchett MD (1998) Photosynthetic response of Halophilia ovalis to heavy metal stress. Environ Pollut 103:91–101

    Article  CAS  Google Scholar 

  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29

    Article  Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. J Plant Physiol 163:847–855

    Article  PubMed  CAS  Google Scholar 

  • Sanità di Toppi L, Gabrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Schnettger B, Critchley C, Santore UJ (1994) Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: effect of protein synthesis. Plant Cell Environ 17:55–64

    Article  CAS  Google Scholar 

  • Shah K, Kumar RG, Verna S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Shi X, Zhang C, Wang H, Zhang F (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  • Silberbush M, Ben-Asher J, Ephrath JE (2005) A model for nutrient and water flow and their uptake by plants grown in a soilless culture. Plant Soil 271(1–2):309–319

    Article  CAS  Google Scholar 

  • Simonova E, Henselova E, Masarovicova E, Kohanova J (2007) Comparison of tolerance of Brassica juncea and Vigna radiate to cadmium. Biol Plant 51(3):488–492

    Article  CAS  Google Scholar 

  • Souza JF, Dolder H, Cortelazzo AL (2005) Effect of excess cadmium and zinc ions on roots and shoots of maize seedlings. J Plant Nutr 28:1923–1931

    Article  CAS  Google Scholar 

  • Stiborova M (1988) Cadmium ions affect the quaternary structure of ribulose-1, 5-bisphosphate carboxylase from barley leaves. Biochem Physiol der Pflanzen 183:371–378

    CAS  Google Scholar 

  • Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436

    Article  CAS  Google Scholar 

  • Vassilev A, Manolov P (1999) Chlorophyll fluorescence of barley (Hordeum vulgare L.) seedlings growing in excess of Cd. Bulg J Plant Physiol 23(3–4):67–76

    Google Scholar 

  • Vassilev A, Lidon FC, Matos MC, Ramalho JC, Yordanov I (2002) Photosynthetic performance and content of some nutrients in cadmium- and copper-treated barley plants. J Plant Nutri 25(11):2343–2360

    Article  CAS  Google Scholar 

  • Verma S, Dubey RS (2001) Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biol Plant 44:117–123

    Article  CAS  Google Scholar 

  • Wagner JG (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–210

    Article  CAS  Google Scholar 

  • Wang L, Wang W, Chen Q, Cao W, Li M, Zhang F (2000) Silicon-induced cadmium tolerance of rice seedlings. J Plant Nutr 23:1397–1406

    Article  CAS  Google Scholar 

  • Yoshida S, Ohnishi Y, Kitagishi K (1962) Histochemistry of silicon in rice plant III. The presence of cuticle-silica double layer in the epidermal tissue. Soil Sci Plant Nutri 8:1–5

    Google Scholar 

Download references

Acknowledgement

This work was supported by funds from the Academic Challenge Award Program of the Botany Department at Miami University, Oxford, Ohio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chika C. Nwugo.

Additional information

Responsible Editor: Jian Feng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nwugo, C.C., Huerta, A.J. Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311, 73–86 (2008). https://doi.org/10.1007/s11104-008-9659-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9659-4

Keywords

Navigation