Skip to main content

Advertisement

Log in

Mycorrhizal responses to biochar in soil – concepts and mechanisms

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Experiments suggest that biomass-derived black carbon (biochar) affects microbial populations and soil biogeochemistry. Both biochar and mycorrhizal associations, ubiquitous symbioses in terrestrial ecosystems, are potentially important in various ecosystem services provided by soils, contributing to sustainable plant production, ecosystem restoration, and soil carbon sequestration and hence mitigation of global climate change. As both biochar and mycorrhizal associations are subject to management, understanding and exploiting interactions between them could be advantageous. Here we focus on biochar effects on mycorrhizal associations. After reviewing the experimental evidence for such effects, we critically examine hypotheses pertaining to four mechanisms by which biochar could influence mycorrhizal abundance and/or functioning. These mechanisms are (in decreasing order of currently available evidence supporting them): (a) alteration of soil physico-chemical properties; (b) indirect effects on mycorrhizae through effects on other soil microbes; (c) plant–fungus signaling interference and detoxification of allelochemicals on biochar; and (d) provision of refugia from fungal grazers. We provide a roadmap for research aimed at testing these mechanistic hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K-I, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Angelini J, Castro S, Fabra A (2003) Alterations in root colonization and nodC gene induction in the peanut-rhizobia interaction under acidic conditions. Plant Physiol Biochem 41:289–294

    Article  CAS  Google Scholar 

  • Antal MJ Jr, Grønli M (2003) The art, science, and technology of charcoal production. Indust Engin Chem Res 42:1619–1640

    Article  CAS  Google Scholar 

  • Aspray TJ, Eirian Jones E, Whipps JM, Bending GD (2006) Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris–Lactarius rufus symbiosis. FEMS Microbiol Ecol 56:25–33

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Organic Geochem 33:1093–1109

    Article  CAS  Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular–arbuscular mycorrhizal symbiosis. Appl Environ Microb 55:2320–2325

    Google Scholar 

  • Cohn J, Bradley D, Stacey G (1998) Legume nodule organogenesis. Trends Plant Sci 3:105–110

    Article  Google Scholar 

  • Day D, Evans RJ, Lee JW, Reicosky D (2005) Economical CO2, SOx, and NOx capture from fossil-fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration. Energy 30:2558–2579

    Article  CAS  Google Scholar 

  • DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453

    Article  CAS  Google Scholar 

  • Drew EA, Murray RS, Smith SE (2006) Functional diversity of external hyphae of AM fungi: ability to colonize new hosts is influenced by fungal species, distance and soil conditions. Appl Soil Ecol 32:350–365

    Article  Google Scholar 

  • Duclos JL, Fortin JA (1983) Effect of glucose and active charcoal on in-vitro synthesis of ericoid mycorrhiza with Vaccinium spp. New Phytol 94:95–102

    Article  CAS  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  PubMed  CAS  Google Scholar 

  • Escudero V, Mendoza RE (2005) Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient. Mycorrhiza 15:291–299

    Article  PubMed  Google Scholar 

  • Ezawa T, Yamamoto K, Yoshida S (2002) Enhancement of the effectiveness of indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Soil Sci Plant Nutr 48:897–900

    Google Scholar 

  • Founoune H, Duponnois R, Bâ AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza Helper Bacteria stimulate ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus. New Phytol 153:81–89

    Article  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular–arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Phil Trans R Soc B 362:187–196

    Article  PubMed  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biol Fert Soils 35:219–230

    Article  CAS  Google Scholar 

  • Glaser B, Woods W (2004) Towards an understanding of amazon dark earths. In: B Glaser, W Woods (eds)Amazon dark earths: explorations in space and time. Springer, Berlin, pp 1–8

    Google Scholar 

  • Gundale MJ, DeLuca TH (2006) Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal. For Ecol Manag 231:86–93

    Article  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  PubMed  CAS  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 135:335–344

    Article  Google Scholar 

  • Harvey AE, Jurgensen MF, Larsen MJ (1976) Comparative distribution of ectomycorrhizae in a mature Douglas-fir/Larch forest soil in western Montana. Forest Sci 22:350–358

    Google Scholar 

  • Harvey AE, Jurgensen MF, Larsen MJ (1978) Seasonal distribution in a mature Douglas-fir/Larch forest soil in western Montana. Forest Sci 22:203–208

    Google Scholar 

  • Harvey AE, Larsen MF, Jurgensen MF (1979) Comparative distribution of ectomycorrhizae in soils of three western Montana forest habitat types. Forest Sci 25:350–358

    Google Scholar 

  • Herrmann S, Oelmuller R, Buscot F (2004) Manipulation of the onset of ectomycorrhiza formation by indole-3-acetic acid, activated charcoal or relative humidity in the association between oak micro-cuttings and Piloderma croceum: influence on plant development and photosynthesis. J Plant Physiol 161:509–517

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Janetta, K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microb 68:1919–1924

    Article  CAS  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner F-J, Bothe H (2006) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  PubMed  CAS  Google Scholar 

  • Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and mobility of charcoal in a fire-impacted watershed. Geochim Cosmochim Ac 71:3432–3445

    Article  CAS  Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Kadoya K (1994) Effects of charcoal as a soil conditioner on citrus growth and vesicular–arbuscular mycorrhizal development. J Jpn Soc Hortic Sci 63:529–535

    CAS  Google Scholar 

  • Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042

    Article  Google Scholar 

  • Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae?. Ecol Appl 3:749–757

    Article  Google Scholar 

  • Kawamoto K, Ishimaru K, Imamura Y (2005) Reactivity of wood charcoal with ozone. Wood Sci 51:66–72

    Article  CAS  Google Scholar 

  • Keech O, Carcaillet C, Nilsson MC (2005) Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant Soil 272:291–300

    Article  CAS  Google Scholar 

  • Klironomos JN, Kendrick WB (1996) Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol Fert Soils 21:43–52

    Article  Google Scholar 

  • Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85:91–118

    Article  CAS  Google Scholar 

  • Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR (2006) Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar island, India. Biol Fert Soils 42:358–361

    Article  Google Scholar 

  • Krull ES, Skjemstad JO, Graetz D, Grice K, Dunning W, Cook G, Parr JF (2003) 13C-depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths. Org Geochem 34:1337–1352

    Article  CAS  Google Scholar 

  • Kwon S, Pignatello JJ (2005) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): pseudo pore blockage by model lipid components and its implications for N2-probed surface properties of natural sorbents. Env Sci Technol 39:7932–7939

    Article  CAS  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  CAS  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Frontiers in Ecology and the Environment 5:381–387

    Article  Google Scholar 

  • Lehmann J, Da Silva JP Jr, Steiner C, Nehls T, Zech W, Glaser B (2003) Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 249:343–357

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Biochar sequestration in terrestrial ecosystems – a review. Mitig Adapt Strat Global Change 11:403–427

    Article  Google Scholar 

  • Lucas RE, Davis JF (1961) Relationships between pH values of organic soils and availabilities of 12 plant nutrients. Soil Sci 92:177–182

    Article  CAS  Google Scholar 

  • Major J, Steiner C, Ditommaso A, Falcão NP, Lehmann J (2005) Weed composition and cover after three years of soil fertility management in the central Brazilian Amazon: compost, fertilizer, manure and charcoal applications. Weed Biol Manag 5:69–76

    Article  Google Scholar 

  • Marris E (2006) Black is the new green. Nature 442:624–626

    Article  PubMed  CAS  Google Scholar 

  • Matsubara Y-I, Hasegawa N, Fukui H (2002) Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J Jpn Soc Hortic Sci 71:370–374

    Article  Google Scholar 

  • Miller RM, Miller SP, Jastrow JD, Rivetta CB (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytol 155:149–162

    Article  CAS  Google Scholar 

  • Mori S, Marjenah (1994) Effect of charcoaled rice husks on the growth of Dipterocarpaceae seedlings in East Kalimantan with special reference to ectomycorrhiza formation. J Jap Forestry Soc 76:462–464

    Google Scholar 

  • Mummey DL, Rillig MC, Holben WE (2005) Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:83–90

    Article  CAS  Google Scholar 

  • Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular–arbuscular mycorrhiza-stimulatory compounds from clover (Trifolium repens) roots. Appl Environ Microb 57:434–439

    CAS  Google Scholar 

  • Oguntunde PG, Fosu M, Ajayi AE, Van De Giesen ND (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fert Soils 39:295–299

    Article  CAS  Google Scholar 

  • Pan MJ, Van Staden J (1998) The use of charcoal in in-vitro culture – A review. Plant Growth Regul 26:155–163

    Article  CAS  Google Scholar 

  • Paszkowski U (2006) A journey through signaling in arbuscular mycorrhizal symbioses. New Phytol 172:35–46

    Article  PubMed  CAS  Google Scholar 

  • Pietikäinen J, Kiikkilä O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  Google Scholar 

  • Preston CM, Schmidt MWI (2006) Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3:397–420

    Article  CAS  Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microb 72:3550–3557

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rondon M, Lehmann J, Ramírez J, Hurtado MP (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol Fert Soils 43:699–708

    Article  Google Scholar 

  • Saito M (1990) Charcoal as a micro habitat for VA mycorrhizal fungi, and its practical application. Agric Ecosyst Environ 29:341–344

    Article  Google Scholar 

  • Samonin VV, Elikova EE (2004) A study of the adsorption of bacterial cells on porous materials. Microbiology 73:810–816

    Article  PubMed  CAS  Google Scholar 

  • Schiermeier Q (2006) Putting the carbon back. Nature 442:620–623

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: Analysis, distribution, implications and current challenges. Global Biogeochem Cy 14:777–793

    Article  CAS  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Skjemstad JO, Janik LJ, Taylor JA (1998) Non-living soil organic matter: What do we know about it? Aust. J Exp Agr 38:667–680

    Article  Google Scholar 

  • Swift RS (2001) Sequestration of carbon by soil. Soil Sci 166:858–871

    Article  CAS  Google Scholar 

  • Swift MJ, Heal OW, Anderson JW (1979) Decomposition in terrestrial ecosystems. University of California Press, Berkeley

    Google Scholar 

  • Topoliantz S, Ponge J-F, Ballof S (2005) Manioc peel and charcoal: a potential organic amendment for sustainable soil fertility in the tropics. Biol Fert Soils 41:15–21

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Tryon EH (1948) Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monogr 18:81–115

    Article  CAS  Google Scholar 

  • Vaario LM, Tanaka M, Ide Y, Gill WM, Suzuki K (1999) In vitro ectomycorrhiza formation between Abies firma and Pisolithus tinctorius. Mycorrhiza 9:177–183

    Article  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  PubMed  CAS  Google Scholar 

  • Van der Heijden MG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Wallstedt A, Coughlan A, Munson AD, Nilsson MC, Margolis HA (2002) Mechanisms of interaction between Kalmia angustifolia cover and Picea mariana seedlings. Can J For Res 32:2022–2031

    Article  Google Scholar 

  • Xie Z-P, Staehelin C, Vierheilig H, Wiemken A, Jabbouri S, Broughton WJ, Vogeli-Lange R, Boller T (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol 108:1519–1525

    PubMed  CAS  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshiori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Zhu YG, Miller RM (2003) Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends Plant Sci 8:407–409

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias C. Rillig.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warnock, D.D., Lehmann, J., Kuyper, T.W. et al. Mycorrhizal responses to biochar in soil – concepts and mechanisms. Plant Soil 300, 9–20 (2007). https://doi.org/10.1007/s11104-007-9391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-007-9391-5

Keywords

Navigation