Skip to main content
Log in

Progressive N limitation of plant response to elevated CO2: a microbiological perspective

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

A major uncertainty in predicting long-term ecosystem C balance is whether stimulation of net primary production will be sustained in future atmospheric CO2 scenarios. Immobilization of nutrients (N in particular) in plant biomass and soil organic matter (SOM) provides negative feedbacks to plant growth and may lead to progressive N limitation (PNL) of plant response to CO2 enrichment. Soil microbes mediate N availability to plants by controlling litter decomposition and N transformations as well as dominating biological N fixation. CO2-induced changes in C inputs, plant nutrient demand and water use efficiency often have interactive and contrasting effects on microbes and microbially mediated N processes. One critical question is whether CO2-induced N accumulation in plant biomass and SOM will result in N limitation of microbes and subsequently cause them to obtain N from alternative sources or to alter the ecosystem N balance. We reviewed the experimental results that examined elevated CO2 effects on microbial parameters, focusing on those published since 2000. These results in general show that increased C inputs dominate the CO2 impact on microbes, microbial activities and their subsequent controls over ecosystem N dynamics, potentially enhancing microbial N acquisition and ecosystem N retention. We reason that microbial mediation of N availability for plants under future CO2 scenarios will strongly depend on the initial ecosystem N status, and the nature and magnitude of external N inputs. Consequently, microbial processes that exert critical controls over long-term N availability for plants would be ecosystem-specific. The challenge remains to quantify CO2-induced changes in these processes, and to extrapolate the results from short-term studies with step-up CO2 increases to native ecosystems that are already experiencing gradual changes in the CO2 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrews JA, Schlesinger WH (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Global Biogeochem Cycles 15:149–162

    Article  CAS  Google Scholar 

  • Azam F, Stevenson FJ, Mulvaney RL (1989) Chemical extraction of newly immobilized 15N and native soil N as influenced by substrate addition rate and soil treatments. Soil Biol Biochem 21:715–722

    Article  CAS  Google Scholar 

  • Baggs EM, Richter M, Cadisch G, Hartwig UA (2003) Denitrification in grass swards is increased under elevated atmospheric CO2. Soil Biol Biochem 35:729–732

    Article  CAS  Google Scholar 

  • Ball AS (1997) Microbial decomposition at elevated CO2 levels: effect of litter quality. Global Change Biol 3:379–386

    Article  Google Scholar 

  • Barnard R, Leadley PW, Hungate BA (2005) Global change, nitrification, and denitrification: a review. Global Biogeochem cycles 19, Art. No. GB1007

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354

    Article  CAS  Google Scholar 

  • Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417:729–731

    Article  PubMed  CAS  Google Scholar 

  • Booker FL, Maier CA (2001) Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Tree Physiol 21:609–616

    PubMed  CAS  Google Scholar 

  • Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF (2000) Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 81:2359–2365

    Article  Google Scholar 

  • Chapin FS III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer-Verlag, New York, NY

    Google Scholar 

  • Cheng WX, Coleman DC (1990) Effect of living roots on soil organic-matter decomposition. Soil Biol Biochem 22:781–787

    Article  Google Scholar 

  • Cheng WX, Johnson DW (1998) Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202:167–174

    Article  CAS  Google Scholar 

  • Colpaert JV, vanLaere A (1996) A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytol 134:133–141

    Article  CAS  Google Scholar 

  • Corre MD, Beese FO, Brumme R (2003) Soil nitrogen cycle in high nitrogen deposition forest, changes under nitrogen saturation and liming. Ecol Appl 13:287–298

    Google Scholar 

  • Daepp M, Suter D, Almeida JPF, Isopp H, Hartwig UA, Frehner M, Blum H, Nosberger J, Luscher A (2000) Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biol 6:805–816

    Article  Google Scholar 

  • De Luis I, Irigoyen JJ, Sanchez-Diaz M (1999) Elevated CO2 enhances plant growth in droughted N2–fixing alfalfa without improving water status. Physiol Plant 107:84–89

    Article  Google Scholar 

  • Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant-response to elevated carbon-dioxide. Nature 364:616–617

    Article  CAS  Google Scholar 

  • Finzi AC, DeLucia EH, Schlesinger WH (2004) Canopy N and P dynamics of a southeastern US pine forest under elevated CO2. Biogeochemistry 69:363–378

    Article  CAS  Google Scholar 

  • Finzi AC, Moore DJP, Delucia EH, Lichter J, Hofmocke KS, Jackson RB, Kim HS, Matamala R, Mccarthy HR, Oren R, Pippen JS, Schlesinger WH (2006) Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. Ecology 87:15–25

    PubMed  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev Cambridge Philos Soc 63:433–462

    Article  Google Scholar 

  • Franck VM, Hungate BA, Chapin FS, Field CB (1997) Decomposition of litter produced under elevated CO2: dependence on plant species and nutrient supply. Biogeochemistry 36:223–237

    Article  Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2001) Elevated atmospheric CO2 alters root symbiont community structure in forest trees. New Phytol 152:431–442

    Article  CAS  Google Scholar 

  • Gill RA, Anderson LJ, Polley HW, Johnson HB, Jackson RB (2006) Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2. Ecology 87:41–52

    PubMed  Google Scholar 

  • Gill RA, Polley HW, Johnson HB, Anderson LJ, Maherali H, Jackson RB (2002) Nonlinear grassland responses to past and future atmospheric CO2 ecosystems in sequestering anthropogenic CO2. Nature 417:279–282

    Article  PubMed  CAS  Google Scholar 

  • Groffman PM, Law NL, Belt KT, Band LE, Fisher GT (2004) Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7:393–403

    CAS  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  PubMed  CAS  Google Scholar 

  • Holmes WE, Zak DE, Pregitzer KS, King JS (2003) Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO2 and O3. Global Change Biol 9:1743–1750

    Article  Google Scholar 

  • Hoosbeek MR, Lukac M, van Dam D, Godbold DL, Velthorst EJ, Biondi FA, Peressotti A, Cotrufo MF, de Angelis P, Scarascia-Mugnozza G (2004) More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE), cause of increased priming effect? Global Biogeochem Cycles 18: Art. No. GB1040

  • Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    Article  PubMed  CAS  Google Scholar 

  • Hu SJ, Firestone MK, Chapin FS (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. Trends Ecol Evol 14:433–437

    Article  PubMed  Google Scholar 

  • Hu S, Wu J, Burkey KO, Firestone MK (2005) Plant and microbial N acquisition under elevated atmospheric CO2 in two mesocosm experiments with annual grasses. Global Change Biol 11:213–223

    Article  Google Scholar 

  • Hungate BA, Dijkstra P, Johnson DW, Hinkle CR, Drake BG (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Global Change Biol 5:781–789

    Article  Google Scholar 

  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate change. Science 302:1512–1513

    Article  PubMed  CAS  Google Scholar 

  • Hungate BA, Stiling PD, Dijkstra P, Johnson DW, Ketterer ME, Hymus GJ, Hinkle CR, Drake BG (2004) CO2 elicits long-term decline in nitrogen fixation. Science 304:1291–1291

    Article  PubMed  CAS  Google Scholar 

  • Johnson DW (2006) Progressive N limitation in forests: Review and implications for long-term responses to elevated CO2. Ecology 87:64–75

    PubMed  Google Scholar 

  • Jones DL, Farrar J, Giller KE (2003) Associative nitrogen fixation and root exudation – What is theoretically possible in the rhizosphere? Symbiosis 35:19–38

    CAS  Google Scholar 

  • King JY, Mosier AR, Morgan JA, LeCain DR, Milchunas DG, Parton WJ (2004) Plant nitrogen dynamics in shortgrass steppe under elevated atmospheric carbon dioxide. Ecosystems 7:147–160

    CAS  Google Scholar 

  • Klironomos JN, Allen MF, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433:621–624

    Article  PubMed  CAS  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O, Hattenschwiler S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498

    Article  CAS  Google Scholar 

  • Langley JA, Hungate BA (2003) Mycorrhizal controls on belowground litter quality. Ecology 84:2302–2312

    Google Scholar 

  • Lee TD, Reich PB, Tjoelker MG (2003) Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. Oecologia 137:22–31

    Article  PubMed  Google Scholar 

  • Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biol 9:838–848

    Article  Google Scholar 

  • Luo YQ, Reynolds JF (1999) Validity of extrapolating field CO2 experiments to predict carbon sequestration in natural ecosystems. Ecology 80:1568–1583

    Google Scholar 

  • Luo YQ, Hui DF, Zhang DQ (2006) Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87:53–63

    PubMed  Google Scholar 

  • Luo YQ, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate BA, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience 54:731–739

    Article  Google Scholar 

  • Matson PA, McDowell WH, Townsend AR, Vitousek PM (1999) The globalization of N deposition, ecosystem consequences in tropical environments. Biogeochemistry 46:67–83

    CAS  Google Scholar 

  • Matzek V, Vitousek PM (2003) Nitrogen fixation in bryophytes, lichens, and decaying wood along a soil-age gradient in Hawaiian montane rain forest. Biotropica 35:12–19

    Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas – extending the capabilities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484

    Article  CAS  Google Scholar 

  • Montealegre CM, van Kessel C, Blumenthal JM, Hur HG, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Global Change Biol 6:475–482

    Article  Google Scholar 

  • Nakamura T, Koike T, Lei T, Ohashi K, Shinano T, Tadano T (1999) The effect of CO2 enrichment on the growth of nodulated and non-nodulated isogenic types of soybean raised under two nitrogen concentrations. Photosynthetica 37:61–70

    Article  Google Scholar 

  • Niklaus PA, Körner C (2004) Synthesis of a six-year study of calcareous grassland responses to in situ CO2 enrichment. Ecol Monogr 74:491–511

    Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  Google Scholar 

  • Norby RJ, Iversen CM (2006) Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest. Ecology 87:5–14

    PubMed  Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • Oh NH, Richter DD (2004) Soil acidification induced by elevated atmospheric CO2. Global Change Biol 10:1936–1946

    Article  Google Scholar 

  • Olsrud M, Melillo JM, Christensen TR, Michelsen A, Wallander H, Olsson PA (2004) Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytol 162:459–469

    Article  Google Scholar 

  • Oren R, Ellsworth DS, Johnsen KH (2001) Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–472

    Article  PubMed  CAS  Google Scholar 

  • Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Global Change Biol 3:363–377

    Article  Google Scholar 

  • Pendall E, Mosier AR, Morgan JA (2004) Rhizodeposition stimulated by elevated CO2 in a semiarid grassland. New Phytol 162:447–458

    Article  Google Scholar 

  • Phillips RL, Whalen SC, Schlesinger WH (2001) Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest ecosystem. Global Biogeochem Cycles 15:741–752

    Article  CAS  Google Scholar 

  • Rasse DP, Perestaw G, Drake BG (2005) Seventeen years of elevated CO2 exposure in a Chesapeake Bay Wetland, sustained but contrasting responses of plant growth and CO2 uptake. Global Change Biol 11:369–377

    Article  Google Scholar 

  • Rastetter EB, Perakis SS, Shaver GR, Agren GI (2005) Terrestrial C sequestration at elevated-CO2 and temperature: the role of dissolved organic N loss. Ecol Appl 15:71–86

    Google Scholar 

  • Read DJ, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature (London) 440:922–925

    Article  CAS  Google Scholar 

  • Richter M, Hartwig UA, Frossard E, Nosberger J, Cadisch G (2003) Gross fluxes of nitrogen in grassland soil exposed to elevated atmospheric pCO2 for seven years. Soil Biol Biochem 35:1325–1335

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rillig MC, Field CB, Allen MF (1999) Fungal root colonization responses in natural grasslands after long-term exposure to elevated atmospheric CO2. Global Change Biol 5:577–585

    Article  Google Scholar 

  • Ross DJ, Newton PCD, Tate KR (2004) Elevated [CO2] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sand. Plant Soil 260:183–196

    Article  CAS  Google Scholar 

  • Ross DJ, Tate KR, Newton PCD, Clark H (2002) Decomposability of C3 and C4 grass litter sampled under different concentrations of atmospheric carbon dioxide at a natural CO2 spring. Plant Soil 240:275–286

    Article  CAS  Google Scholar 

  • Runion GB, Curl EA, Rogers HH, Backman PA, Rodríguez-Kábana R, Helms BE (1994) Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cotton. Agric For Entomol 70:117–130

    Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralization, challenges of a changing paradigm. Ecology 85:591–602

    Google Scholar 

  • Serraj R, Sinclair TR, Allen LH (1998) Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichment. Plant Cell Environ 21:491–500

    Article  Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, Inc., New York, NY, pp 357–396

    Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300:1138–1140

    Article  PubMed  CAS  Google Scholar 

  • Tissue DT, Megonigal JP, Thomas RB (1997) Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing tree. Oecologia 109:28–33

    Article  Google Scholar 

  • Torbert HA, Prior SA, Rogers HH, Runion GB (2004) Elevated atmospheric CO2 effects on N fertilization in grain sorghum and soybean. Field Crops Res 88:57–67

    Article  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Tu C, Booker FL, Watson DM, Chen X, Rufty TW, Shi W, Hu S (2006) Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Global Change Biol 12:793–803

    Article  Google Scholar 

  • Uselman SM, Qualls RG, Thomas RB (1999) A test of a potential short cut in the nitrogen cycle, the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant Soil 210:21–32

    Article  CAS  Google Scholar 

  • van Groenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci USA 103:6571–6574

    Article  PubMed  CAS  Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JL (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • West JB, HilleRisLambers J, Lee TD, Hobbie SE, Reich PB (2005) Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO2]. New Phytol 167:523–530

    Article  PubMed  CAS  Google Scholar 

  • Wiemken V, Laczko E, Ineichen K, Boller T (2001) Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in beech–spruce ecosystems on siliceous and calcareous soil. Microb Ecol 42:126–135

    PubMed  CAS  Google Scholar 

  • Williams MA, Rice CW, Owensby CE (2000) Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil 227:127–137

    Article  CAS  Google Scholar 

  • Williams MA, Rice CW, Owensby CE (2001) Nitrogen competition in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Soil Sci Soc Am J 65:340–346

    Article  CAS  Google Scholar 

  • Williams EL, Walter LM, Ku TCW, Kling GW, Zak DR (2003) Effects of CO2 and nutrient availability on mineral weathering in controlled tree growth experiments. Global Biogeochem Cycles 17: Art. No. 1041

  • Woods LE, Cole CV, Porter LK, Coleman DC (1987) Transformations of added and indigenous nitrogen in gnotobiotic soil – a comment on the priming effect. Soil Biol Biochem 19:673–678

    Article  Google Scholar 

  • Zak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH (2003) Soil nitrogen cycling under elevated CO2, a synthesis of forest face experiments. Ecol Appl 13:1508–1514

    Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Holmes WE (2000a) Atmospheric CO2 and the composition and function of soil microbial communities. Ecological Appl 10:47–59

    Article  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000b) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    Article  CAS  Google Scholar 

  • Zanetti S, Hartwig UA, Luscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nosberger J (1996) Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric pCO2 in a grassland ecosystem. Plant Physiol 112:575–583

    PubMed  CAS  Google Scholar 

  • Zwart KB, Kuikman PJ, van Veen JA (1994) Rhizosphere protozoa, their significance in nutrient dynamics. In: Darbyshire JF (ed) Soil protozoa. CAB International, Wallingford, UK, pp 93–122

    Google Scholar 

Download references

Acknowledgments

We thank Yiqi Luo for his constructive inputs towards the early version of the manuscript. Thanks are also extended to three anonymous reviewers whose critical and constructive comments significantly helped us revising this manuscript. The preparation of the manuscript and the experiments presented were partially supported by grants from the National Science Foundation (DEB 9627368 and 0001686), and USDA (NRI-2000-00531). XC was on a Pao Foundation fellowship and was partially supported by the National Natural Science Foundation of China (NSFC, No. 30228005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuijin Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, S., Tu, C., Chen, X. et al. Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant Soil 289, 47–58 (2006). https://doi.org/10.1007/s11104-006-9093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9093-4

Keywords

Navigation