Skip to main content
Log in

Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3′UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abe J, Sidenius U, Svensson B (1993) Arginine is essential for the alpha-amylase inhibitory activity of the alpha-amylase/subtilisin inhibitor (BASI) from barley seeds. Biochem J 293:151–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Altenbach SB, Vensel WH, Dupont FM (2011) The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86. BMC Res Notes 4:242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ambekar SS, Patil SC, Giri AP, Kachole MS (1996) Proteinaceous inhibitors of trypsin and of amylases in developing and germinating seeds of pigeon pea (Cajanus cajan (L) Millsp). J Sci Food Agric 72:57–62

    Article  CAS  Google Scholar 

  • Barbosa AE, Albuquerque EV, Silva MC, Souza DS, Oliveira-Neto OB, Valencia A, Rocha TL, Grossi-de-Sa MF (2010) Alpha-amylase inhibitor-1 gene from Phaseolus vulgaris expressed in Coffea arabica plants inhibits alpha-amylases from the coffee berry borer pest. BMC Biotechnol 10:44

    Article  PubMed Central  PubMed  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhide AJ, Channale SM, Patil SS, Gupta VS, Ramasamy S, Giri AP (2015) Biochemical, structural and functional diversity among Helicoverpa armigera amylases. Biochim Biophys Acta 1850:1719–1728

    Article  CAS  PubMed  Google Scholar 

  • Carugo O, Lu S, Luo J, Gu X, Liang S, Strobl S, Pongor S (2001) Structural analysis of free and enzyme-bound amaranth alpha-amylase inhibitor: classification within the knottin fold superfamily and analysis of its functional flexibility. Protein Eng 14:639–646

    Article  CAS  PubMed  Google Scholar 

  • Chagolla-Lopez A, Blanco-Labra A, Patthy A, Sánchez R, Pongor S (1994) Purified AAI strongly inhibits the alpha-amylase activity of insect larvae (Tribolium castaneum and Prostephanus truncatus) and does not inhibit proteases and mammalian alpha-amylases. J Biol Chem 269:23675–23680

    CAS  PubMed  Google Scholar 

  • Channale SM, Bhide AJ, Yadav Y, Kashyap G, Pawar PK, Maheshwari VL, Ramasamy S, Giri AP (2016) Characterization of two coleopteran a-amylases and molecular insights into their differential inhibition by synthetic α-amylase inhibitor, acarbose. Insect Biochem Mol Biol 74:1–11

    Article  CAS  PubMed  Google Scholar 

  • Cheng WH, Taliercio EW, Chourey PS (1999) Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incw1) through its 3′ untranslated region in a cell suspension culture of maize. Proc Natl Acad Sci USA 96:10512–10517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cloutier C, Jean C, Fournier M, Yelle S, Michaud D (2000) Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Arch Insect Biochem Physiol 44:69–81

    Article  CAS  PubMed  Google Scholar 

  • Dayler CS, Mendes PA, Prates MV, Bloch C Jr, Franco OL, Grossi-de-Sá MF (2005) Identification of a novel bean alpha-amylase inhibitor with chitinolytic activity. FEBS Lett 579:5616–5620

    Article  CAS  PubMed  Google Scholar 

  • De Leo F, Bonade-Bottino MA, Ceci LR, Gallerani R, Jouanin L (1998) Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants. Plant Physiol 118:997–1004

    Article  PubMed Central  PubMed  Google Scholar 

  • de Sousa-Majer MJ, Hardie DC, Turner NC, Higgins TJ (2007) Bean alpha-amylase inhibitors in transgenic peas inhibit development of pea weevil larvae. J Econ Entomol 100:1416–1422

    PubMed  Google Scholar 

  • Do Nascimento VV, Castro HC, Abreu PA, Oliveira AE, Fernandez JH, Araújo Jda S, Machado OL (2011) In silico structural characteristics and α-amylase inhibitory properties of Ric c 1 and Ric c 3, allergenic 2 S albumins from Ricinus communis seeds. J Agric Food Chem 59:4814–4821

    Article  PubMed  Google Scholar 

  • Franco AL, Rigden DJ, Melo FR, Grossi-de-sa MF (2002) Plant α-amylase inhibitors and their interaction with insect α-amylases. Eur J Biochem 269:397–412

    Article  CAS  PubMed  Google Scholar 

  • Girard C, Le Metayer M, Zaccomer B, Bartlet E, Williams I, Bonadé-Bottino M, Pham-Delegue M, Jouanin L (1998) Growth stimulation of beetle larvae reared on a transgenic oilseed rape expressing a cysteine proteinase inhibitor. J Insect Physiol 44:263–270

    Article  CAS  PubMed  Google Scholar 

  • Giri AP, Kachole MS (1998) Amylase inhibitors of pigeonpea (Cajanus cajan) seeds. Phytochemistry 47:197–202

    Article  CAS  PubMed  Google Scholar 

  • Giri AP, Chougule NP, Telang MA, Gupta VS (2004) Engineering insect tolerant plants using plant defensive proteinase inhibitors.Recent Dev Phytochem 8:117–137

    CAS  Google Scholar 

  • Giri AP, Bhide AJ, Gupta VS (2016) Targeting digestive physiology: trends in strategic exploitation of plant defensive proteinaceous inhibitors against insect pests. Genetic engineering of plants–enhancing productivity and product value. John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester

    Google Scholar 

  • Gomez L, Sanchez-Monge R, Garcia-Olmedo F, Salcedo G (1989) Wheat tetrameric inhibitors of insect alpha-amylases: Alloploid heterosis at the molecular level. Proc Natl Acad Sci USA 86:3242–3246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara-Nishimura I, Inoue K, Nishimura M (1991) A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett 294:89–93

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto M, Suzuki K, Iwanaga M, Kikuchi F, Kitamura K (1995) Variation of seed α-amylase inhibitors in the common bean. Theor Appl Genet 90:425–429

    Article  CAS  PubMed  Google Scholar 

  • Kluh I, Horn M, Hýblová J, Hubert J, Dolecková-Maresová L, Voburka Z, Kudlíková I, Kocourek F, Mares M (2005) Inhibitory specificity and insecticidal selectivity of alpha-amylase inhibitor from Phaseolus vulgaris. Phytochemistry 66:31–39

    Article  CAS  PubMed  Google Scholar 

  • Koepke T, Schaeffer S, Krishnan V, Jiwan D, Harper A, Whiting M, Oraguzie N, Dhingra A (2012) Rapid gene-based SNP and haplotype marker development in non-model eukaryotes using 3′UTR sequencing. BMC Genom 1186:1471–2164

    Google Scholar 

  • Lagarda-Diaz I, Geiser D, Guzman-Partida AM, Winzerling J, Vazquez-Moreno L (2014) Recognition and binding of the PF2 lectin to α-amylase from Zabrotes subfasciatus (Coleoptera:Bruchidae) larval midgut. J Insect Sci 14:204

    Article  PubMed  Google Scholar 

  • Lazaro A, Rodriguez-Palenzuela P, Maraña C, Carbonero P, Garcia-Olmedo F (1988) Signal peptide homology between the sweet protein thaumatin II and unrelated cereal alpha-amylase/trypsin inhibitors. FEBS Lett 239:147–150

    Article  CAS  PubMed  Google Scholar 

  • Leah R, Mundy J (1989) The bifunctional α-amylase/subtilisin inhibitor of barley: nucleotide sequence and patterns of seed-specific expression. Plant Mol Biol 12:673–682

    Article  CAS  PubMed  Google Scholar 

  • Limure T, Kihara M, Sato K, Ogushi K (2015) Purification of barley dimeric α-amylase inhibitor-1 (BDAI-1) and avenin-like protein-a (ALP) from beer and their impact on beer foam stability. Food Chem 172:257–264

    Article  Google Scholar 

  • Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS, Lyu PC (2007) Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Proteins 68:530–540

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Cheng CS, Lai SM, Hsu MP, Chen CS, Lyu PC (2006) Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 63:777–786

    Article  CAS  PubMed  Google Scholar 

  • Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Deng P, Liu X, Luo J, Han R, Gu X, Liang S, Wang X, Li F, Lozanov V, Patthy A, Pongor S (1999) Solution structure of the major α-amylase inhibitor of the crop plant Amaranth. J Biol Chem 274: 20473–20478

    Article  CAS  PubMed  Google Scholar 

  • Lulek J, Franco OL, Silva M, Slivinski CT, Bloch C Jr, Rigden DJ, Grossi de Sá MF (2000) Purification, biochemical characterisation and partial primary structure of a new alpha-amylase inhibitor from Secale cereale (rye). Int J Biochem Cell Biol 32:1195–1204

    Article  Google Scholar 

  • Lüthi C, Alvarez-Alfageme F, Ehlers JD, Higgins TJ, Romeis J (2013) Resistance of αAI-1 transgenic chickpea (Cicer arietinum) and cowpea (Vigna unguiculata) dry grains to bruchid beetles (Coleoptera: Chrysomelidae). Bull Entomol Res 103:373–381

    Article  PubMed  Google Scholar 

  • Ma L, Pati PK, Liu M, Li QQ, Hunt AG (2014) High throughput characterizations of poly(A) site choice in plants. Methods 67:74–83

    Article  CAS  PubMed  Google Scholar 

  • Martins JC, Enassar M, Willem R, Wieruzeski JM, Lippens G, Wodak SJ (2001) Solution structure of the main alpha-amylase inhibitor from amaranth seeds. Eur J Biochem 268:2379–2389

    Article  CAS  PubMed  Google Scholar 

  • Micheelsen PO, Vévodová J, De Maria L, Ostergaard PR, Friis EP, Wilson K, Skjøt M (2008) Structural and mutational analyses of the interaction between the barley alpha-amylase/subtilisin inhibitor and the subtilisin savinase reveal a novel mode of inhibition. J Mol Biol 380:681–690

    Article  CAS  PubMed  Google Scholar 

  • Mirkov TE, Evans SV, Wahlstrom J, Gomez L, Young NM, Chrispeels MJ (1995) Location of the active site of the bean alpha-amylase inhibitor and involvement of a Trp, Arg, Tyr triad. Glycobiology 5:45–50

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Mahajan N, Tamhane VA, Kulkarni MJ, Baldwin IT, Gupta VS, Giri AP (2012) Stress inducible proteinase inhibitor diversity in Capsicum annuum. BMC Plant Biol 12:217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morton RL, Schroeder HE, Bateman KS, Chrispeels MJ, Armstrong E, Higgins TJ (2000) Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci USA 97:3820–3825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nahoum V, Farisei F, Le-Berre-Anton V, Egloff MP, Rougé P, Poerio E, Payan F (1999) A plant-seed inhibitor of two classes of alpha-amylases: X-ray analysis of Tenebrio molitor larvae alpha-amylase in complex with the bean Phaseolus vulgaris inhibitor. Acta Crystallogr D 55:360–372

    Article  CAS  PubMed  Google Scholar 

  • Nakaguchi T, Arakawa T, Philo JS, Wen J, Ishimoto M, Yamaguchi H (1997) Structural characterization of an alpha-amylase inhibitor from a wild common bean (Phaseolus vulgaris): insight into the common structural features of leguminous alpha-amylase inhibitors. J Biochem 121:350–354

    Article  CAS  PubMed  Google Scholar 

  • Napoleão TH, Pontual EV, de Albuquerque Lima T, de Lima Santos ND, Sá RA, Coelho LC, do Amaral Ferraz Navarro DM, Paiva PM (2012) Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res 110:609–616

    Article  Google Scholar 

  • Nguyen PQ, Wang S, Kumar A, Yap LJ, Luu TT, Lescar J, Tam JP (2014) Discovery and characterization of pseudocyclic cystine-knot α-amylase inhibitors with high resistance to heat and proteolytic degradation. FEBS J 281:4351–4366

    Article  CAS  PubMed  Google Scholar 

  • O’Connor CM, McGeeney KF (1981) Isolation and characterization of four inhibitors from wheat flour which display differential inhibition specificities for human salivary and human pancreatic alpha-amylases. Biochim Biophys Acta 658:387–396

    Article  PubMed  Google Scholar 

  • O’Leary BM, Rico A, McCraw S, Fones HN, Preston GM (2014) The infiltration-centrifuge technique for extraction of apoplastic fluid from plant leaves using Phaseolus vulgaris as an example. J Vis Exp 94:e52113. doi:10.3791/52113

    Google Scholar 

  • Oganesyan N, Kim S, Kim R (2005) On-column protein refolding for crystallization. J Strct Funct Genom 6:177–182

    Article  CAS  Google Scholar 

  • Paes NS, Gerhardt IR, Coutinho MV, Yokoyama M, Santana E, Harris N, Chrispeels MJ, Grossi de Sa MF (2000) The effect of arcelin-1 on the structure of the midgut of bruchid larvae and immunolocalization of the arcelin protein. J Insect Physiol 46:393–402

    Article  CAS  PubMed  Google Scholar 

  • Pereira PJ, Lozanov V, Patthy A, Huber R, Bode W, Pongor S, Strobl S (1999) Specific inhibition of insect alpha-amylases: yellow meal worm alpha-amylase in complex with the amaranth alpha-amylase inhibitor at 2.0 A resolution. Structure 7:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Petrucci T, Rab A, Tomasi M, Silano V (1976) Further characterization studies of the alpha-amylase protein inhibitor of gel electrophoretic mobility 0.19 from the wheat kernel. Biochim Biophys Acta 420:288–297

    Article  CAS  PubMed  Google Scholar 

  • Pueyo JJ, Hunt DC, Chrispeels MJ (1993) Activation of bean (Phaseolus vulgaris) alpha-amylase inhibitor requires proteolytic processing of the proprotein. Plant Physiol 101:1341–1348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucl Acids Res 42:320–324

    Article  Google Scholar 

  • Robertson M, Walker-Simmons M, Munro D, Hill RD (1989) Induction of alpha-amylase inhibitor synthesis in barley embryos and young seedlings by abscisic acid and dehydration stress. Plant Physiol 91:415–420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodenburg KW, Várallyay E, Svendsen I, Svensson B (1995) Arg-27, Arg-127 and Arg-155 in the beta-trefoil protein barley alpha-amylase/subtilisin inhibitor are interface residues in the complex with barley alpha-amylase 2. Biochem J 309:969–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  • Sanchez de la Hoz P, Castagnaro A, Carbonero P (1994) Sharp divergence between wheat and barley at loci encoding novel members of the trypsin/alpha-amylase inhibitors family. Plant Mol Biol 26:1231–1236

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Monge R, Gomez L, Garcia-Olmedo F, Salcedo G (1986) A tetrameric inhibitor of insect alpha-amylase from barley. FEBS Letters 207(1):105–109

    Article  CAS  Google Scholar 

  • Sarate PJ, Tamhane VA, Kotkar HM, Ratnakaran N, Susane N, Gupta VS, Giri AP (2012) Developmental and digestive flexibilities in the midgut of polyphagous insect, the cotton bollworm, Helicoverpa armigera. J Insect Sci 12:42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi ZD, Qian XM, Zhang JX, Han L, Zhang KL, Chen LY, Zhou X, Zhang JN, Kang CS (2014) BASI, a potent small molecular inhibitor, inhibits glioblastoma progression by targeting microRNA-mediated β-catenin signaling. CNS Neurosci Ther 20(9):830–839

    Article  CAS  PubMed  Google Scholar 

  • Strobl S, Maskos K, Wiegand G, Huber R, Gomis-Rüth FX, Glockshuber R (1998) A novel strategy for inhibition of alpha-amylases: yellow meal worm alpha-amylase in complex with the Ragi bifunctional inhibitor at 2.5 A resolution. Structure 6:911–921

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein-protein docking. Nucleic Acids Res 34:310–324

    Article  Google Scholar 

  • Valencia-Jiménez A, Arboleda JW, López Avila A, Grossi-de-Sá MF (2008) Digestive alpha-amylases from Tecia solanivora larvae (Lepidoptera: Gelechiidae): response to pH, temperature and plant amylase inhibitors. Bull Entomol Res 98:575–579

    Article  PubMed  Google Scholar 

  • Vallée F, Kadziola A, Bourne Y, Juy M, Rodenburg KW, Svensson B, Haser R (1998) Barley alpha-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 A resolution. Structure 6:649–659

    Article  PubMed  Google Scholar 

  • Vijayan S, Imani J, Tanneeru K, Guruprasad L, Kogel KH, Kirti PB (2012) Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis. Peptides 33:220–229

    Article  CAS  PubMed  Google Scholar 

  • von Heijne G (1985) Signal sequences: the limits of variation. J Mol Biol 184:99–105

    Article  Google Scholar 

  • von Heijne G, Abrahmsen L (1989) Species-specific variation in signal peptide design Implications for protein secretion in foreign hosts. FEBS Lett 244:439–446

    Article  Google Scholar 

  • Wang JR, Wei YM, Yan ZH, Zheng YL (2008) SNP and haplotype identification of the wheat monomeric alpha-amylase inhibitor genes. Genetica 134:277–285

    Article  CAS  PubMed  Google Scholar 

  • Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 47:1–32

    Google Scholar 

  • Wiegand G, Epp O, Huber R (1995) The crystal structure of porcine pancreatic alpha-amylase in complex with the microbial inhibitor Tendamistat. J Mol Biol 247:99–110

    Article  CAS  PubMed  Google Scholar 

  • Wisessing A, Engkagul A, Wongpiyasatid A, Choowongkomon K (2010) Biochemical characterization of the alpha-amylase inhibitor in mung beans and its application in inhibiting the growth of Callosobruchus maculatus. J Agric Food Chem 58:2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki T, Deguchi M, Fujimoto T, Masumura T, Uno T, Kanamaru K, Yamagata H (2006) Rice bifunctional alpha-amylase/subtilisin inhibitor: cloning and characterization of the recombinant inhibitor expressed in Escherichia coli. Biosci Biotechnol Biochem 70:1200–1219

    Article  CAS  PubMed  Google Scholar 

  • Zavala JA, Giri AP, Jongsma MA, Baldwin IT (2008) Digestive duet: midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression. Plos ONE 3:e2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zoccatelli G, Sega M, Bolla M, Cecconi D, Vaccino P, Rizzi C, Chignola R, Brandolini A (2012) Expression of α-amylase inhibitors in diploid Triticum species. Food Chem 135:2643–2649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AJB and SKR thank Council for Scientific and Industrial Research (CSIR) for Senior Research Fellowship and Dept. of Science and Technology (DST), New Delhi for Ramanujan Fellowship, respectively. Authors thanks Dt. Bhushan Dholakia for critically reading and providing suggestions in the manuscript drafts. This project is supported by the Department of Biotechnology, Goverment of India (BT/PR2295/AGR/5/552/2011) to CSIR-National Chemical Laboratory (GAP 298126), Pune, and North Maharashtra University, Jalgaon. This project is also supported by CSIR under XII five year plan projects (BSC0107 and BSC0120) to CSIR-National Chemical Laboratory, Pune.

Author contributions

APG, SKR, PKP and VLM designed the experiments. AJB, SMC, and KB conducted the experiments. YY performed homology modelling and docking studies. AJB, VSG and APG wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok P. Giri.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2017_609_MOESM1_ESM.tif

Supplementary Figure 1—Homology modeling and circular-dichroism (CD) spectroscopy of AhAI. Homology modeling was performed using I-TASSER server. The most suitable model was selected based on CD spectroscopic data. CD spectroscopy was performed at concentration of 50 µg/mL rAhAI in 20 mM Tris (pH 8.5) buffer (TIF 3570 KB)

11103_2017_609_MOESM2_ESM.tif

Supplementary Figure 2—Sub-cellular localization and detection of GFP in tobacco epidermal cells. a CBB stained gel showing proteins extracted from apoplast and total cellular leaf extract devoid of apoplast before transfer to the PVDF membrane. An equal amount of protein (28 µg) was loaded in each well. Rubisco protein present in the total cellular extract was represented by ‘R’. The absence of Rubisco in apoplastic fluid indicated no cellular damage caused during the extraction procedure. b Complete transfer of the proteins (except few very high molecular weight proteins) to the membrane was confirmed by silver staining (TIF 8271 KB)

Supplementary material 3 (DOCX 16 KB)

Supplementary material 4 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhide, A.J., Channale, S.M., Yadav, Y. et al. Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species. Plant Mol Biol 94, 319–332 (2017). https://doi.org/10.1007/s11103-017-0609-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0609-5

Keywords

Navigation