Skip to main content
Log in

Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Soybean is a high phosphorus (P) demand species that is sensitive to low-P stress. Although many quantitative trait loci (QTL) for P efficiency have been identified in soybean, but few of these have been cloned and agriculturally applied mainly due to various limitations on identifying suitable P efficiency candidate genes. Here, we combined QTL mapping, transcriptome profiling, and plant transformation to identify candidate genes underlying QTLs associated with low-P tolerance and response mechanisms to low-P stress in soybean. By performing QTL linkage mapping using 152 recombinant inbred lines (RILs) that were derived from a cross between a P-efficient variety, Nannong 94–156, and P-sensitive Bogao, we identified four major QTLs underlying P efficiency. Within these four QTL regions, 34/81 candidate genes in roots/leaves were identified using comparative transcriptome analysis between two transgressive RILs, low-P tolerant genotype B20 and sensitive B18. A total of 22 phosphatase family genes were up-regulated significantly under low-P condition in B20. Overexpression of an acid phosphatase candidate gene, GmACP2, in soybean hairy roots increased P efficiency by 15.43–24.54 % compared with that in controls. Our results suggest that integrating QTL mapping and transcriptome profiling could be useful for rapidly identifying candidate genes underlying complex traits, and phosphatase-encoding genes, such as GmACP2, play important roles involving in low-P stress tolerance in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin JC, Karthikeyan AS, Raghothama KG (2001) LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato. Plant Physiol 125:728–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassman KG, Whitney AS, Stockinger KR (1980) Root-growth and dry-matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen-source. Crop Sci 20:239–244

    Article  CAS  Google Scholar 

  • Cembella AD, Antia NJ, Harrison PJ (1984) The Utilization of Inorganic and Organic Phosphorus-Compounds as Nutrients by Eukaryotic Microalgae: a Multidisciplinary Perspective 0.2. CRC Crit Rev Microbiol 11:13–81

    Article  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T et al (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cordell D, White S (2011) Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3:2027–2049

    Article  Google Scholar 

  • Dai XY, Wang YY, Yang A et al (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159:169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshmukh R, Singh A, Jain N et al (2010) Identification of candidate genes for grain number in rice (Oryza sativa L.). Funct Integr Genomic 10:339–347

    Article  CAS  Google Scholar 

  • Devaiah BN, Karthikeyan AS, Raghothama KG (2007) WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis. Plant Physiol 143:1789–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y et al (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid-phosphatases in plant phosphorus-metabolism. Physiol Plant 90:791–800

    Article  CAS  Google Scholar 

  • Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23:833–838

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Sanchez CA, Paez-Valencia J et al (2012) Genetic manipulation of a “vacuolar” H(+)-PPase: from salt tolerance to yield enhancement under phosphorus-deficient soils. Plant Physiol 159:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowin S (1997) Phosphorus and potassium effects on soybeans. In: Horticultural crops plant nutrition series (ed S. JB), Texas A&M University, Texas, p. 44–51

    Google Scholar 

  • Hernandez G, Ramirez M, Valdes-Lopez O et al (2007) Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol 144:752–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Poling MD, Karthikeyan AS et al (2007) Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol 144:232–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karl AW, James JE, Jessica RC et al (2013) Phosphorus, food, and our future. Oxford University Express, Oxford

    Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M et al (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kereszt A, Li D, Indrasumunar A et al (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protocol 2:948–952

  • Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14:R36

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YD, Wang YJ, Tong YP et al (2005) QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.) Euphytica 142:137–142

    Article  CAS  Google Scholar 

  • Li X, Chang W, Zhang C (2011) Advances of soybean (Glycine max L.) phosphorus nutrition and high P-efficient germplasms screening in China. Soybean Sci 30:322–327

    Google Scholar 

  • Liang CY, Chen ZJ, Yao ZF et al (2012) Characterization of two putative protein phosphatase genes and their involvement in phosphorus efficiency in Phaseolus vulgaris. J Integr Plant Biol 54:400–411

    Article  CAS  PubMed  Google Scholar 

  • Lin HJ, Gao J, Zhang ZM et al (2013) Transcriptional responses of maize seedling root to phosphorus starvation. Mol Biol Rep 40:5359–5379

    Article  CAS  PubMed  Google Scholar 

  • Marino R, Ponnaiah M, Krajewski P et al (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Genet Genomics 281:163–179

    Article  CAS  PubMed  Google Scholar 

  • Meharg C, Khan B, Norton G et al (2014) Trait-directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass, Holcus lanatus. New Phytol 201:144–154

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Das R, Pandey G (2009) Role of ethylene responsive factors (ERFs) in abiotic stress mediated signaling in plants. J Biol Sci 1:133–146

    Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms 1819:86–96

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1986) Citation-Classic: a modified single solution method for the determination of phosphate in natural-waters. Current Contents/Agricul Biol Environ Sci 12:16–16

    Google Scholar 

  • Nagarajan VK, Jain A, Poling MD et al (2011) Arabidopsis Pht1;5 mobilizes phosphate between source and sink organs and influences the interaction between phosphate homeostasis and ethylene signaling. Plant Physiol 156:1149–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholas KB, Nicholas HBJ (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments.

  • O’Rourke JA, Yang SS, Miller SS et al (2013) An RNA-seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants. Plant Physiol 161:705–724

    Article  PubMed  Google Scholar 

  • Olivera M, Tejera N, Iribarne C et al (2004) Growth, nitrogen fixation and ammonium assimilation in common bean (Phaseolus vulgaris): effect of phosphorus. Physiol Plant 121:498–505

    Article  CAS  Google Scholar 

  • Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html.

  • Pachauri V, Mishra V, Mishra P et al (2014) Identification of candidate genes for rice grain aroma by combining QTL mapping and transcriptome profiling approaches. Cereal Res Commun 42:376–388

    Article  CAS  Google Scholar 

  • Petersen LN, Marineo S, Mandala S et al (2010) The missing link in plant histidine biosynthesis: Arabidopsis myoinositol monophosphatase-like2 encodes a functional histidinol-phosphate phosphatase. Plant Physiol 152:1186–1196

    Article  CAS  PubMed  Google Scholar 

  • Rengefors K, Pettersson K, Blenckner T et al (2001) Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: application of a novel method. J Plankton Res 23:435–443

    Article  CAS  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R et al (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A et al (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46:174–184

    Article  CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Song HN, Yin ZT, Chao MN et al (2014) Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant Cell Environ 37:462–472

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N et al (2011) MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian J, Venkatachalam P, Liao H et al (2007) Molecular cloning and characterization of phosphorus starvation responsive genes in common bean (Phaseolus vulgaris L.) Planta 227:151–165

    Article  CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia H, Wilson C, Condamine P et al (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139:822–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walia H, Wilson C, Condamine P et al (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten C, Zeng Z (2005) Windows QTL Cartographer 2.5. Department of Statistics. North Carolina State University, Raleigh, NC

    Google Scholar 

  • Xu EJ, Vaahtera L, Horak H et al (2015) Quantitative trait loci mapping and transcriptome analysis reveal candidate genes regulating the response to ozone in Arabidopsis thaliana. Plant Cell Environ 38:1418–1433

    Article  CAS  PubMed  Google Scholar 

  • Yang ZK, Zheng JW, Niu YF et al (2014) Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress. Environ Microbiol 16:1793–1807

    Article  CAS  PubMed  Google Scholar 

  • Yano K, Takashi T, Nagamatsu S et al (2012) Efficacy of microarray profiling data combined with QTL mapping for the identification of a QTL gene controlling the initial growth rate in rice. Plant Cell Physiol 53:729–739

  • Yin Z, Meng F, Song H et al (2010) Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.) Planta 231:875–885

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Cheng H, Geng LY et al (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322

    Article  CAS  Google Scholar 

  • Zhang D, Liu C, Cheng H et al (2010) Quantitative trait loci associated with soybean tolerance to low phosphorus stress based on flower and pod abscission. Plant Breeding 129:243–249

    Article  CAS  Google Scholar 

  • Zhang JX, Wu KL, Zeng SJ et al (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genomics 14

  • Zhang D, Song HN, Cheng H et al (2014) The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress. PLoS Genet 10:E1004061

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Prof. Gresshoff (University of Queensland, Australia) for providing the A. rhizogenes strain K599. We thank the two anonymous reviewers for their critical and highly valuable comments. This research was supported by the National Natural Science Foundation of China (31301336), the Science and Technology Innovation Talents Projects of the Education Department of Henan Province (15HASTIT034) and China Postdoctoral Science Foundation (2015M580630).

Author contributions

DZ, HZ conceived and designed the experiments. DZ, SC, HL, and YC performed the experiments. DZ and HZ performed data analyses. DZ and HZ wrote the manuscript. DT and DY contributed reagents, materials or analysis tools. All authors read and approved the final version of the manuscript to be published.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Zhang.

Ethics declarations

Conflict of interest

No conflicts of interest declared.

Additional information

Dan Zhang and Hengyou Zhang have contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Zhang, H., Chu, S. et al. Integrating QTL mapping and transcriptomics identifies candidate genes underlying QTLs associated with soybean tolerance to low-phosphorus stress. Plant Mol Biol 93, 137–150 (2017). https://doi.org/10.1007/s11103-016-0552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0552-x

Keywords

Navigation