Skip to main content
Log in

Regulatory cis-elements are located in accessible promoter regions of the CAT2 promoter and affect activating histone modifications in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Catalase 2 (CAT2) plays an important role in the detoxification of hydrogen peroxide released either during photorespiration or as a consequence of biotic and abiotic stress as well as in the initiation of senescence. To date, our understanding of the regulation of CAT2 gene expression is rather poor. Chromatin immunoprecipitation experiments revealed that a wide region of the CAT2 promoter is nucleosome depleted, reflecting the ability to rapidly respond to changing environmental and stress conditions and, thus, adjusting the transcript levels of CAT2. The lowest nucleosome density was found in the region of −900 bp relative to the transcription initiation start (TIS) where two regulatory elements are located. The distance of the nucleosome depleted region to the TIS is quite unusual because the majority of nucleosome free regions are generally located in close vicinity to the 5′ untranslated region. The analysis of transgenic 5′ upstream deletion::gusA Arabidopsis lines showed that this region is important for the regulation of CAT2 promoter activity. To evaluate the function of the two motifs, the contribution of each element to CAT2 promoter activity was analyzed by site directed mutagenesis. The data revealed that the CAT2 promoter is regulated by the ACGT motif (Box2) rather than by the G-Box binding motif (Box1) in the vegetative phase of development. Furthermore, the presence of both Box1 and Box2 positively affected the abundance of activating histone modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adwy W, Laxa M, Peterhänsel C (2015) A simple mechanism for the establishment of C2-specific gene expression in Brassicaceae. Plant J 84:1231–1238

    Article  CAS  PubMed  Google Scholar 

  • Anderson JD, Widom J (2001) Poly(dA-dT) promoter elements increase the equilibrium accessibility of nucleosomal DNA target sites. Mol Cell Biol 21:3830–3839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Bell O, Tiwari VK, Thomä NH, Schübeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12:554–564

    Article  CAS  PubMed  Google Scholar 

  • Benhamed M, Bertrand C, Servet C, Zhou DX (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burlingame RW, Love WE, Wang BC, Hamlin R, Nguyen H, Moudrianakis EN (1985) Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3.3 A. Science 228:546–553

    Article  CAS  PubMed  Google Scholar 

  • Chang GS, Noegel AA, Mavrich TN, Müller R, Tomsho L, Ward E, Felder M, Jiang C, Eichinger L, Glöckner G, Schuster SC, Pugh BF (2012) Unusual combinatorial involvement of poly-A/T tracts in organizing genes and chromatin in Dictyostelium. Genome Res 22:1098–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel JA, Kuo F, Kim J, Cokus SJ, Casero D, Bernal M, Huijser P, Clark AT, Krämer U, Merchant SS, Zhang X, Jacobsen SE, Pellegrini M (2010) Relationship between nucleosome positioning and DNA ethylation. Nature 466:388–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua YL, Watson LA, Gray JC (2003) The transcriptional enhancer of the pea plastocyanin gene associates with the nuclear matrix and regulates gene expression through histone acetylation. Plant Cell 15:1468–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cockerill PN (2011) Structure and function of active chromatin and DNase I hypersensitive sites. FEBS J 278:2182–2210

    Article  CAS  PubMed  Google Scholar 

  • Delany AM (2001) Measuring transcription of metalloproteinase genes. Nuclear run-off assay vs analysis of hnRNA. Methods Mol Biol 151:321–333

    CAS  PubMed  Google Scholar 

  • Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50:1318–1326

    Article  CAS  PubMed  Google Scholar 

  • Earley K, Lawrence RJ, Pontes O, Reuther R, Enciso AJ, Silva M, Neves N, Gross M, Viega W, Pikaard CS (2006) Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance. Genes Dev 20:1283–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elferink CJ, Reiners JJ Jr (1996) Quantitative RT-PCR on CYP1A1 heterogeneous nuclear RNA:a surrogate for the in vitro transcription run-on assay. Biotechniques 20:470–477

    CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112:327–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Yuan HM, Hu YQ, Li J, Lu YT (2014) Mutation of Arabidopsis CATALASE2 results in hyponastic leaves by changes of auxin levels. Plant Cell Environ 37:175–188

    Article  CAS  PubMed  Google Scholar 

  • Gross DS, Garrard WT (1988) Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57:159–197

    Article  CAS  PubMed  Google Scholar 

  • Gross DS, Adams CC, Lee S, Stentz B (1993) A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J 12:3931–3945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y, Chaouch S, Mhamdi A, Queval G, Zechmann B, Noctor G (2013) Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H(2)O(2) to activation of salicylic acid accumulation and signaling. Antioxid Redox Signal 18:2106–2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley PD, Madhani HD (2009) Mechanisms that specify promoter nucleosome location and identity. Cell 137:445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes JJ, Tullius TD, Wolffe AP (1990) The structure of DNA in a nucleosome. Proc Natl Acad Sci USA 87:7405–7409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YQ, Liu S, Yuan HM, Li J, Yan DW, Zhang JF, Lu YT (2010) Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3′-untranslated region exchange experiments in the Arabidopsis CAT2 photorespiratory mutant. Plant Cell Environ 33:1656–1670

    Article  CAS  PubMed  Google Scholar 

  • Jaskiewicz M, Peterhänsel C, Conrath U (2011) Detection of histone modifications in plant leaves. J Vis Exp 55:pii 3096

    Google Scholar 

  • Kodama Y, Nagaya S, Shinmyo A, Kato K (2007) Mapping and characterization of DNase I hypersensitive sites in Arabidopsis chromatin. Plant Cell Physiol 48:459–470

    Article  CAS  PubMed  Google Scholar 

  • Le Martelot G, Canella D, Symul L, Migliavacca E, Gilardi F, Liechti R, Martin O, Harshman K, Delorenzi M, Desvergne B, Herr W, Deplancke B, Schibler U, Rougemont J, Guex N, Hernandez N, Naef F, CycliX Consortium (2012) Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol 10:e1001442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee CK, Shibata Y, Rao B, Strahl BD, Lieb JD (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36:900–905

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Moreau Y, De Moor B, Rouzé P, Rombauts S (2002) PlantCARE:a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CL, Kaplan T, Kim M, Buratowski S, Schreiber SL, Friedman N, Rando OJ (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3:e328

    Article  PubMed  PubMed Central  Google Scholar 

  • Lohr D (1997) Nucleosome transactions on the promoters of the yeast GAL and PHO genes. J Biol Chem 272:26795–26798

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Wallrath LL, Granok H, Elgin SC (1993) (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Mol Cell Biol 13:2802–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260

    Article  CAS  PubMed  Google Scholar 

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  CAS  PubMed  Google Scholar 

  • McClung CR (1997) Regulation of catalases in Arabidopsis. Free Radic Biol Med 23:489–496

    Article  CAS  PubMed  Google Scholar 

  • Ng DW, Chandrasekharan MB, Hall TC (2006) Ordered histone modifications are associated with transcriptional poising and activation of the phaseolin promoter. Plant Cell 18:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie Y, Cheng X, Chen J, Sun X (2014) Nucleosome organization in the vicinity of transcription factor binding sites in the human genome. BMC Genomics 15:493

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Connor TR, Dyreson C, Wyrick JJ (2005) Athena:a resource for rapid visualization and systematic analysis of Arabidopsis promoter sequences. Bioinformatics 21:4411–4413

    Article  PubMed  Google Scholar 

  • Pennings S, Allan J, Davey CS (2005) DNA methylation, nucleosome formation and positioning. Brief Funct Genomic Proteomic 3:351–361

    Article  CAS  PubMed  Google Scholar 

  • Queval G, Issakidis-Bourguet E, Hoeberichts FA, Vandorpe M, Gakière B, Vanacker H, Miginiac-Maslow M, Van Breusegem F, Noctor G (2007) Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant CAT2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J 52:640–657

    Article  CAS  PubMed  Google Scholar 

  • Quinodoz M, Gobet C, Naef F, GusAtafson KB (2014) Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters. Genome Biol 15:R85

    Article  PubMed  PubMed Central  Google Scholar 

  • Raduwan H, Isola AL, Belden WJ (2013) Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression. J Biol Chem 288:8380–8390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145–150

    Article  CAS  PubMed  Google Scholar 

  • Satchwell SC, Drew HR, Travers AA (1986) Sequence periodicities in chicken nucleosome core DNA. J Mol Biol 191:659–675

    Article  CAS  PubMed  Google Scholar 

  • Schindler U, Beckmann H, Cashmore AR (1992a) TGA1 and G-box binding factors: two distinct classes of Arabidopsis leucine zipper proteins compete for the G-box-like element TGACGTGG. Plant Cell 4:1309–1319

  • Schindler U, Terzaghi W, Beckmann H, Kadesch T, Cashmore AR (1992b) DNA binding site preferences and transcriptional activation properties of the Arabidopsis transcription factor GBF1. EMBO J 11:1275–1289

  • Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  CAS  PubMed  Google Scholar 

  • Segal E, Widom J (2009) What controls nucleosome positions? Trends Genet 25:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18:735–748

    Article  CAS  PubMed  Google Scholar 

  • Smykowski A, Zimmermann P, Zentgraf U (2010) G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis. Plant Physiol 153:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somerville CR (1986) Analysis of photosynthesis with mutants of higher plants and algae. Annu Rev. Plant Physiol 37:467–507

    Article  CAS  Google Scholar 

  • Svaren J, Schmitz J, Hörz W (1994) The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter. EMBO J 13:4856–4862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A (2011) Determinants of nucleosome organization in primary human cells. Nature 474:516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • Venter U, Svaren J, Schmitz J, Schmid A, Hörz W (1994) A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J 13:4848–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welchen E, Viola IL, Kim HJ, Prendes LP, Comelli RN, Hong JC, Gonzalez DH (2009) A segment containing a G-box and an ACGT motif confers differential expression characteristics and responses to the Arabidopsis Cytc-2 gene, encoding an isoform of cytochrome c. J Exp Bot 60:829–845

    Article  CAS  PubMed  Google Scholar 

  • Widom J (2001) Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269–324

    Article  CAS  PubMed  Google Scholar 

  • Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Article  CAS  PubMed  Google Scholar 

  • Zaugg JB, Luscombe NM (2012) A genomic model of condition-specific nucleosome behavior explains transcriptional activity in yeast. Genome Res 22:84–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 5:e129

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong HH, McClung CR (1996) The circadian clock gates expression of two Arabidopsis catalase genes to distinct and opposite circadian phases. Mol Gen Genet 251:196–203

    CAS  PubMed  Google Scholar 

  • Zhong HH, Young JC, Pease EA, Hangarter RP, McClung CR (1994) Interactions between light and the circadian clock in the regulation of CAT2 expression in Arabidopsis. Plant Physiol 104:889–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann P, Heinlein C, Orendi G, Zentgraf U (2006) Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ 29:1049–1060

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I especially thank Prof. Dr. Christoph Peterhänsel for constructive discussions on the experiments and this manuscript. I also thank Julia Gunia (AG Peterhänsel, Leibniz University of Hannover, Institute of Botany, 30419 Hannover) for technical assistance.

Author contributions

M.L. designed, performed experiments, analyzed data and wrote the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam Laxa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 871 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laxa, M. Regulatory cis-elements are located in accessible promoter regions of the CAT2 promoter and affect activating histone modifications in Arabidopsis thaliana . Plant Mol Biol 93, 49–60 (2017). https://doi.org/10.1007/s11103-016-0546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0546-8

Keywords

Navigation