Skip to main content

Advertisement

Log in

Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are multifunctional non-coding short nucleotide molecules. Nevertheless, the role of miRNAs in the interactions between plants and necrotrophic pathogens is largely unknown. Here, we report the identification of the miRNA repertoire of the economically important oil crop oilseed rape (Brassica napus) and those involved in interacting with its most devastating necrotrophic pathogen Sclerotinia sclerotiorum. We identified 280 B. napus miRNA candidates, including 53 novel candidates and 227 canonical members or variants of known miRNA families, by high-throughput deep sequencing of small RNAs from both normal and S. sclerotiorum-inoculated leaves. Target genes of 15 novel candidates and 222 known miRNAs were further identified by sequencing of degradomes from the two types of samples. MiRNA microarray analysis revealed that 68 miRNAs were differentially expressed between S. sclerotiorum-inoculated and uninoculated leaves. A set of these miRNAs target genes involved in plant defense to S. sclerotiorum and/or other pathogens such as nucleotide binding site-leucine-rich repeat (NBS-LRR) R genes and nitric oxygen and reactive oxygen species related genes. Additionally, three miRNAs target AGO1 and AGO2, key components of post-transcriptional gene silencing (PTGS). Expression of several viral PTGS suppressors reduced resistance to S. sclerotiorum. Arabidopsis mutants of AGO1 and AGO2 exhibited reduced resistance while transgenic lines over-expressing AGO1 displayed increased resistance to S. sclerotiorum in an AGO1 expression level-dependent manner. Moreover, transient over-expression of miRNAs targeting AGO1 and AGO2 decreased resistance to S. sclerotiorum in oilseed rape. Our results demonstrate that the interactions between B. napus and S. sclerotiorum are tightly regulated at miRNA level and probably involve PTGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGO:

Argonaute

CMV:

Cucumber mosaic virus

DCL:

Dicer-like

MFEI:

Minimal folding free energies index

ETI:

Effector-triggered immunity

KMC:

K-Means Clustering

miRNA:

MicroRNA

NBS-LRR:

Nucleotide binding site-leucine-rich repeat

OE:

Overexpression

PDA:

Potato dextrose agar

Pst :

Pseudomonas syringae pv. tomato

PTGS:

Post-transcriptional gene silencing

PVX:

Potato virus X

qRT-PCR:

Quantitative real-time PCR

ROS:

Reactive oxygen species

TBSV:

Tomato bushy stunt virus

TCV:

Turnip crinkle virus

References

  • Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ (2008) Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 18:758–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addo-Quaye C, Miller W, Axtell MJ (2009) CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 25:130–131

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bolton MD, Thomma B, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Buhtz A, Springer F, Chappell L, Baulcombe DC, Kehr J (2008) Identification and characterization of small RNAs from the phloem of Brassica napus. Plant J 53:739–749

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 60:591–602

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doukhanina EV, Chen S, van der Zalm E, Godzik A, Reed J et al (2006) Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. J Biol Chem 281:18793–18801

    Article  CAS  PubMed  Google Scholar 

  • Guo N, Ye WW, Wu XL, Shen DY, Wang YC et al (2011) Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54:954–958

    Article  CAS  PubMed  Google Scholar 

  • Harvey JJW, Lewsey MG, Patel K, Westwood J, Heimstaedt S et al (2011) An antiviral defense role of AGO2 in plants. PLoS One 6:e14639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DQ, Koh C, Feurtado JA, Tsang EWT, Cutler AJ (2013) MicroRNAs and their putative targets in Brassica napus seed maturation. BMC Genomics 14:140

    Article  CAS  PubMed  Google Scholar 

  • Jaubert M, Bhattacharjee S, Mello AFS, Perry KL, Moffett P (2011) ARGONAUTE2 mediates RNA-silencing antiviral defenses against Potato virus X in Arabidopsis. Plant Physiol 156:1556–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin W, Wu F (2015) Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves. BMC Plant Biol 15:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kabbage M, Dickman MB (2008) The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol Life Sci 65:1390–1402

    Article  CAS  PubMed  Google Scholar 

  • Korbes AP, Machado RD, Guzman F, Almerao MP, Valter de Oliveira LF et al (2012) Identifying conserved and novel microRNAs in developing seeds of Brassica napus using deep sequencing. PLoS One 7:e50663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang QQ, Zhang J, Wu L, Qi Y et al (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152:2222–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM et al (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109:1790–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Lu YG, Shi Y, Wu L, X YJ et al (2014) Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164:1077–1092

    Article  CAS  PubMed  Google Scholar 

  • Lu SF, Sun YH, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Coruh C, Axtell MJ (2010) Arabidopsis lyrata small RNAs: transient MIRNA and small interfering RNA loci within the Arabidopsis genus. Plant Cell 22:1090–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D et al (2008) Criteria for annotation of plant microRNAs. Plant Cell 20:3186–3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel JB, Godon C, Mourrain P, Beclin C, Boutet S et al (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance. Plant Cell 14:629–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahara KS, Masuta C (2014) Interaction between viral RNA silencing suppressors and host factors in plant immunity. Curr Opin Plant Biol 20:88–95

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perchepied L, Balague C, Riou C, Claudel-Renard C, Riviere N et al (2010) Nitric oxide participates in the complex interplay of defense-related signaling pathways controlling disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. Mol Plant Microb Interact 23:846–860

    Article  CAS  Google Scholar 

  • Radwan O, Liu Y, Clough SJ (2011) Transcriptional analysis of soybean root response to Fusarium virguliforme, the causal agent of sudden death syndrome. Mol Plant Microb Interact 24:958–972

    Article  CAS  Google Scholar 

  • Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S et al (2011) The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. Plant J 67:218–231

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  • Scholthof HB, Alvarad VY, Vega-Arreguin JC, Ciomperlik J, Odokonyero D et al (2011) Identification of an ARGONAUTE for antiviral RNA silencing in Nicotiana benthamiana. Plant Physiol 156:1548–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen D, Suhrkamp I, Wang Y, Liu S, Menkhaus J et al (2014) Identification and characterization of microRNAs in oilseed rape (Brassica napus) responsive to infection with the pathogenic fungus Verticillium longisporum using Brassica AA (Brassica rapa) and CC (Brassica oleracea) as reference genomes. New Phytol 204:577–594

    Article  CAS  PubMed  Google Scholar 

  • Shen EH, Zou J, Behrens FH, Chen L, Ye CY et al (2015) Identification, evolution, and expression partitioning of miRNAs in allopolyploid Brassica napus. J Exp Bot. doi:10.1093/jxb/erv420

    Google Scholar 

  • Shivaprasad PV, Chen HM, Patel K, Bond DM, Santos, BACM et al (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunkar R, Li YF, Jagadeeswaran G (2012) Functions of microRNAs in plant stress responses. Trends Plant Sci 17:196–203

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang MB, Tu JX, Helliwell CA, Waterhouse PM et al (2007) Cloning and characterization of microRNAs from Brassica napus. FEBS Lett 581:3848–3856

    Article  CAS  PubMed  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams B, Kabbage M, Kim HJ, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog 7:e1002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY et al (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474

    Article  CAS  PubMed  Google Scholar 

  • Xin MM, Wang Y, Yao YY, Xie CJ, Peng HR et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.) BMC Plant Biol 10:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu MY, Dong Y, Zhang QX, Zhang L, Luo YZ et al (2012a) Identification of miRNAs and their targets from Brassica napus by high-throughput sequencing and degradome analysis. BMC Genomics 13:421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu QF, Cheng WS, Li SS, Li W, Zhang ZX et al (2012b) Identification of genes required for Cf-dependent hypersensitive cell death by combined proteomics and RNA interfering analyses. J Exp Bot 63:2421–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Jue D, Li W, Zhang R, Chen M et al (2013) Identification of miRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection. PLoS One 8:e72840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Li Y, Han X, Shen F (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PLoS One 7:e35765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai J, Jeong DH, De Paoli E, Park S, Rosen BD et al (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25:2540–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Zhao HW, Gao S, Wang WC, Katiyar-Agarwal S et al (2011) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393*-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mole. Cell 42:356–366

    CAS  Google Scholar 

  • Zhao YT, Wang M, Fu SX, Yang WC, Qi CK et al (2012) Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes. Plant Physiol 158:813–823

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Liu W, Xu YP, Cao JY, Braam J et al (2013) Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol 13:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Shou-Wei Ding (Department of Plant Pathology and Microbiology, University of California, Riverside, USA) for providing the Arabidopsis thaliana mutant ago1-27 and Prof. Yi-Jun Qi (Tsinghua-Peking Center for Life Sciences, and School of Life Sciences, Tsinghua University, China) for providing the A. thaliana mutants ago1-33 and ago2-1. We acknowledge Professor David Baulcombe (Sainsbury Laboratory, John Innes Centre) and Plant Bioscience Limited (Colney Lane, Norwich NR4 7UH, England) for providing the plasmids expressing silencing suppressors. This work was supported by the National Natural Science Foundation of China (31371892), the Special Fund for Agro-scientific Research in the Public Interest (201103016), the SRFDP (20110101110092) and the Fundamental Research Funds for the Central Universities (2016FZA6014).

Author contribution

Jia-Yi Cao performed miRNA idenfication and verification analyses. Li Zhao constructed AGO1-OE transgenic plants and evaluated their resistance. Jia-Yi Cao and Shuang-Sheng Li carried out the resistance evaluation analyses for ago mutants. Jia-Yi Cao and You-Ping Xu conducted gene expression and statistical analyses. Xin-Zhong Cai and You-Ping Xu conceived of the study and participated in its design and coordination. Xin-Zhong Cai and Jia-Yi Cao prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Zhong Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, JY., Xu, YP., Zhao, L. et al. Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Plant Mol Biol 92, 39–55 (2016). https://doi.org/10.1007/s11103-016-0494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0494-3

Keywords

Navigation