Skip to main content
Log in

Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit JM (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego

    Google Scholar 

  • Arondel VV, Vergnolle C, Cantrel C, Kader JC (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci 157:1–12

    Article  CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Boutrot F, Chantret N, Gautier MF (2008) Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein (nsLTP) gene families and identification of wheat nsLTP genes by EST data mining. BMC Genom 9:1216–1219

    Article  Google Scholar 

  • Cao WH, Liu J, He XJ, Mu RL, Zhou HL, Chen SY, Zhang JS (2007) Modulation of ethylene responses affects plant salt-stress responses. Plant Physiol 143:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cecchetti V, Pomponi M, Altamura MM, Pezzotti M, Marsilio S, D’Angel S, Tornielli GB, Costantino P, Cardarelli M (2004) Expression of rolB in tobacco flowers affects the coordinated processes of another dehiscence and style elongation. Plant J. 38:512–525

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    Article  CAS  PubMed  Google Scholar 

  • Chang JH, Clay JM, Chang C (2014) Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis. Plant J 77:558–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YF, Randlett MD, Findell JL, Schaller GE (2002) Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J Biol Chem 277:19861–19866

    Article  CAS  PubMed  Google Scholar 

  • Clark AM, Bohnert HJ (1999) Cell-specific expression of genes of the lipid transfer protein Family from Arabidopsis thaliana. Plant Cell Physiol 40:69–76

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Kharb PK, Teng W, Hall TC (2001) Characterization of rice transformed via an Agrobacterium-mediated inflorescence approach. Mol Breed 7:187–194

    Article  CAS  Google Scholar 

  • Dong CH, Rivarola M, Resnick JS, Maggin BD, Chang C (2008) Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling. Plant J 53:275–286

    Article  CAS  PubMed  Google Scholar 

  • Dong CH, Jang M, Scharein B, Malach A, Rivarola M, Liesch J, Groth G, Hwang I, Chang C (2010) Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signal, RTE1. J Biol Chem 285:40706–40713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebhardt C, Vieths S, Gubesch M, Averbeck M, Simon JC (2009) 10 kD lipid transfer protein: the main allergenic structure in a German patient with anaphylaxia to blueberry. Allergy 64:498–499

    Article  CAS  PubMed  Google Scholar 

  • Gonorazky AG, Regente MC, Canal L (2005) Stress induction and antimicrobial properties of a lipid transfer protein in germinating sunflower seeds. J Plant Physiol 162:618–624

    Article  CAS  PubMed  Google Scholar 

  • Grefen C, Stadele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320

    Article  CAS  PubMed  Google Scholar 

  • Guiderdoni E, Cordero MJ, Vignols F, Garcia-Garrido JM, Lescot M, Tharreau D, Meynard D, Ferriere N, Notteqhem JL, Deiseny M (2002) Inducibility by pathogen attack and developmental regulation of the rice LTP1 gene. Plant Mol Biol 49:683–699

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Yang H, Zhang X, Yang S (2013) Lipid transfer protein 3 as a target of MYB96 mediates freezing and drought stress in Arabidopsis. J Exp Bot 64:1755–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AE, Chen QG, Findell JL, Schaller GE, Bleecker AB (1999) The relationship between ethylene binding and dominant insensitivity conferred by mutant forms of the ETR1 ethylene receptor. Plant Physiol 121:291–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HW, Kim KD, Hwang BK (2005) Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221:361–373

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1975) Proteins and the intracellular exchange lipids: stimulation of phospholipids exchange between mitochondria and microssomal fractions by proteins isolated from potato tuber. Biochim Biophys Acta 380:31–44

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1990) Intracellular transfer of phospholipids, galactolipids, and fatty acids in plant cells. Subcell Biochem 16:69–111

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  PubMed  Google Scholar 

  • Kamachi S, Sekimoto H, Kondo N, Sakia S (1997) Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiol 38:1197–1206

    Article  CAS  PubMed  Google Scholar 

  • Kamachi S, Mizusawa H, Matsuura S, Sakai S (2000) Expression of two 1-aminocyclopropane-1-carboxylate synthase genes, CS-ACSI and CS-ACS2, correlated with sex phenotypes in cucumber plants (Cucumis sativus L.). Plant Biol 17:69–74

    CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Kim MC, Park JH, Han SS, Kim BR, Moon BY, Suh MC, Cho SH (2006) Differential expression of rice lipid transfer protein gene (LTP) classes in response to abscisic acid, salt, salicylic acid, and the fungal pathogen Magnaporthe grisea. J Plant Biol 49:371–375

    Article  CAS  Google Scholar 

  • Knopf RR, Trebitsh T (2006) The female-specific Cs-ACS1G gene of cucumber. A case of gene duplication and recombination between the non-sex-specific 1-aminocyclopropane-1-carboxylate synthase gene and a branched-chain amino acid transaminase gene. Plant Cell Physiol 47:1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Lukowitz W, Gillmor CS, Scheible WR (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123:795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560

    Article  CAS  PubMed  Google Scholar 

  • Monterumici CM, Rosso D, Montoneri E, Ginepro M, Baqlieri A, Novotny EH, Kwapinski W, Neqre M (2015) Processed vs. non-processed biowastes for agriculture: effects of post-harvest tomato plants and biochar on radish growth, chlorophyll content and protein production. Int J Mol Sci 16:8826–8843

    Article  CAS  Google Scholar 

  • Oeller PW, Lu MW, Taylor LP, Plike DA, Theoloqis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439

    Article  CAS  PubMed  Google Scholar 

  • Resnick JS, Wen CK, Shockey JA, Chang C (2006) REVERSION-TO-ETHYLENE SENSITIVITY1, a conserved gene that regulates ethylene receptor function in Arabidopsis. Proc Natl Acad Sci USA 103:7917–7922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resnick JS, Rivarola M, Chang C (2008) Involvement of RTE1 in conformational changes promoting ETR1 ethylene receptor signaling in Arabidopsis. Plant J 56:423–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivarola M, McClellan C, Resnick J, Chang C (2009) ETR1-specific mutations distinguish ETR1 from other Arabidopsis ethylene receptors as revealed genetic interaction with RTE1. Plant Physiol 150:547–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roman G, Ecker JR (1995) Genetic analysis of a seedling stress response to ethylene in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 350:75–81

    Article  CAS  PubMed  Google Scholar 

  • Sakai H, Hua J, Chen QHG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812–5817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarowar S, Kim YJ, Kim KD (2009) Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco. Plant Cell Rep 28:419–427

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wang Y, Cheng Z, Ye T, Chan Z (2012a) Analysis of natural variation in Bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS ONE 7:e53422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012b) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24:2578–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sossountzov L, Ruiz-Avila L, Viqnols F, Jolliot A, Arondel V, Tchang F, Grosbois M, Guerbette F, Miqiniac E, Deiseny M, Puigdomenech P, Kader JC (1991) Spatial and temporal expression of a maize lipid transfer protein gene. Plant Cell 3:923–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staqljar L, Korostensky C, Johnsson N, te Heesen S (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95:5187–5192

    Article  Google Scholar 

  • Tapia G, Morales-Quintana L, Parra C, Berbel A, Alcorta M (2013) Study of nsLTPs in Lotus japonicus genome reveal a specific epidermal cell member (LjLTP10) regulated by drought stress in aerial organs with a putative role in cutin formation. Plant Mol Biol 82:485–501

    Article  CAS  PubMed  Google Scholar 

  • Wang DH, Li F, Duan QH, Han T, Xu ZH, Bai SN (2010) Ethylene perception is involved in female cucumber flower development. Plant J 61:862–872

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Cui X, Sun Y, Dong CH (2013) Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 32:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Wilson RL, Kim H, Bakshi A, Binder BM (2014) The receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress. Plant Physiol 165:1353–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, Huang XH, Wu M, Wang Y, Chang Y, Liu K, Zhang J, Zhang Y, Zhang F, Yi L, Li T, Wang R, Tan G, Li C (2014) A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis. PLoS ONE 9:e83556

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki S, Fujii N, Takahashi H (2000) The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol 41:608–616

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Rose JKC (2008) The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs). Protein Sci 17:191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin T, Quinn JA (1995) Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am J Bot 82:1537–1546

    Article  CAS  Google Scholar 

  • Zhao XC, Schaller GE (2004) Effect of salt and osmotic stress upon expression of the ethylene receptor ETR1 in Arabidopsis thaliana. FEBS Lett 562:189–192

    Article  CAS  PubMed  Google Scholar 

  • Zhao XC, Qu X, Mathews DE, Schaller GE (2002) Effect of ethylene pathway mutations upon expression of the ethylene receptor ETR1 from Arabidopsis. Plant Physiol 130:1983–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Liu Q, Xie F, Wen CK (2007) RTE1 is a Golgi-associated and ETR1-dependent negative regulator of ethylene responses. Plant Physiol 145:75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. R.A. Martienssen (Cold Spring Harbor Laboratory) for providing the seeds of ltp1 mutant. This work was supported by the National Natural Science Foundation of China (31370322, 31571389) and Shandong Natural Science Foundation (ZR2012CM022) to CHD, National Natural Science Foundation of China (31400247) to HP, and a grant from National Institutes of Health 1R01GM071855 to CC.

Authors contribution

H. Wang and Y. Sun did the plant experiments. J. Chang and F. Zheng did the protein interaction assay. H. Pei and Y. Yi did data analysis. C. Chang and C.H. Dong designed the experiments and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caren Chang or Chun-Hai Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, Y., Chang, J. et al. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. Plant Mol Biol 91, 471–484 (2016). https://doi.org/10.1007/s11103-016-0482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0482-7

Keywords

Navigation