Skip to main content
Log in

The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The functional homologues of vertebrate natriuretic peptides (NPs), the plant natriuretic peptides (PNPs), are a novel class of peptidic hormones that signal via guanosine 3′,5′-cyclic monophosphate (cGMP) and systemically affect plant salt and water balance and responses to biotrophic plant pathogens. Although there is increasing understanding of the complex roles of PNPs in plant responses at the systems level, little is known about the underlying signaling mechanisms. Here we report isolation and identification of a novel Leucine-Rich Repeat (LRR) protein that directly interacts with A. thaliana PNP, AtPNP-A. In vitro binding studies revealed that the Arabidopsis AtPNP-A binds specifically to the LRR protein, termed AtPNP-R1, and the active region of AtPNP-A is sufficient for the interaction to occur. Importantly, the cytosolic part of the AtPNP-R1, much like in some vertebrate NP receptors, harbors a catalytic center diagnostic for guanylyl cyclases and the recombinant AtPNP-R1 is capable of catalyzing the conversion of guanosine triphosphate to cGMP. In addition, we show that AtPNP-A causes rapid increases of cGMP levels in wild type (WT) leaf tissue while this response is significantly reduced in the atpnp-r1 mutants. AtPNP-A also causes cGMP-dependent net water uptake into WT protoplasts, and hence volume increases, whereas responses of the protoplasts from the receptor mutant are impaired. Taken together, our results suggest that the identified LRR protein is an AtPNP-A receptor essential for the PNP-dependent regulation of ion and water homeostasis in plants and that PNP- and vertebrate NP-receptors and their signaling mechanisms share surprising similarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bakakina YS, Kolesneva EV, Sodel DL, Dubrovskaya LV, Volotowski ID (2014) Low and high temperatures enhance guanylyl cyclase activity in Arabidopsis. J Plant Physiol Pathol 2:4

    Google Scholar 

  • Billington T, Pharmawati M, Gehring CA (1997) Isolation and immunoaffinity purification of biologically active plant natriuretic peptide. Biochem Biophys Res Commun 235:752–757

    Article  Google Scholar 

  • Breitenbach HH, Wenig M, Wittek F, Jordá L, Maldonado-Alconada AM, Sarioglu H, Colby T, Knappe C, Bichlmeier M, Pabst E, Mackey D, Parker JE, Vlot AC (2014) Contrasting roles of the apoplastic aspartyl protease apoplastic, enhanced disease susceptibility1-dependent1 and legume lectin-like protein1 in Arabidopsis systemic acquired resistance. Plant Physiol 165:791–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butenko MA, Vie AK, Brembu T, Aalen RB, Bones AM (2009) Plant peptides in signalling: looking for new partners. Trends Plant Sci 14:255–263

    Article  CAS  PubMed  Google Scholar 

  • Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics 20:45–50

    Article  CAS  PubMed  Google Scholar 

  • De Jonge R, Peter van Esse H, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci USA 109:5110–5115

    Article  PubMed  PubMed Central  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring C, Irving HR (2012) Peptides and the Regulation of Plant Homeostasis. In: Irving HR, Gehring C (eds) Plant signaling peptides. Signaling and communication in plants 16. Springer, Berlin, pp 183–197

    Chapter  Google Scholar 

  • Gehring C, Irving H (2013) Plant natriuretic peptides: systemic regulators of plant homeostasis and defense that can affect cardiomyoblasts. J Investig Med 61:823–826

    Article  CAS  PubMed  Google Scholar 

  • Gehring CA, Khalid K, Toop T, Donald JA (1996) Rat natriuretic peptide binds specifically to plant membranes and induces stomatal opening. Biochem Biophys Res Commun 228:739–744

    Article  CAS  PubMed  Google Scholar 

  • Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG (2008) Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis. Proc Natl Acad Sci USA 105:18631–18636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581:2237–2246

    Article  CAS  PubMed  Google Scholar 

  • Kleinboelting N, Huep G, Kloetgen A, Viehoever P, Weisshaar B (2012) GABI-Kat simpleSearch: new features of the Arabidopsis thaliana T-DNA mutant database. Nucleic Acids Res 40 (Database issue):D1211–D1215

  • Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2:e449

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286:22580–22588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    Article  CAS  PubMed  Google Scholar 

  • Ludidi N, Morse M, Sayed M, Wherrett T, Shabala S, Gehring C (2004) A recombinant plant natriuretic peptide causes rapid and spatially differentiated K+, Na+ and H+ flux changes in Arabidopsis thaliana roots. Plant Cell Physiol 45:1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Marondedze C, Groen AL, Thomas L, Lilley KS, Gehring C (2015) A quantitative phosphoproteome analysis of cGMP-dependent cellular responses in Arabidopsis thaliana. Mol Plant. doi:10.1016/j.molp.2015.11.007

    PubMed  Google Scholar 

  • Maryani M, Bradley G, Bradley G, Cahill M, Cahill M, Gehring C (2001) Natriuretic peptides and immunoreactants modify osmoticum-dependent volume changes in Solanum tuberosum L. mesophyll cell protoplasts. Plant Sci 161:443–452

    Article  CAS  Google Scholar 

  • Matsubayashi Y, Sakagami Y (2006) Peptide hormones in plants. Annu Rev Plant Biol 57:649–674

    Article  CAS  PubMed  Google Scholar 

  • Morillo SA, Tax FE (2006) Functional analysis of receptor-like kinases in monocots and dicots. Curr Opin Plant Biol 9:460–469

    Article  CAS  PubMed  Google Scholar 

  • Morse M, Pironcheva G, Gehring C (2004) AtPNP-A is a systemically mobile natriuretic peptide immunoanalogue with a role in Arabidopsis thaliana cell volume regulation. FEBS Lett 556:99–103

    Article  CAS  PubMed  Google Scholar 

  • Nan W, Wang X, Yang L, Hu Y, Wei Y, Liang X, Mao L, Bi Y (2014) Cyclic GMP is involved in auxin signalling during Arabidopsis root growth and development. J Exp Bot 65:1571–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pharmawati M, Maryani MM, Nikolakopoulos T, Gehring CA, Irving HR (2001) Cyclic GMP modulates stomatal opening induced by natriuretic peptides and immunoreactive analogues. Plant Physiol Biochem 39:385–394

    Article  CAS  Google Scholar 

  • Qi Y, Katagiri F (2009) Purification of low-abundance Arabidopsis plasma-membrane protein complexes and identification of candidate components. Plant J 57:932–944

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci USA 107:21193–21198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunahara RK, Beuve A, John JG, Sprang SR, Garbers DL, Gilman AG, Tesmer JJG (1998) Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J Biol Chem 273:16332–16338

    Article  CAS  PubMed  Google Scholar 

  • Suwastika IN, Gehring CA (1998) Natriuretic peptide hormones promote radial water movements from the xylem of Tradescantia shoots. Cell Mol Life Sci 54:1161–1167

    Article  CAS  Google Scholar 

  • Suwastika IN, Toop T, Irving HR, Gehring CA (2000) In situ and in vitro binding of natriuretic peptide hormones in Tradescantia multiflora. Plant Biol 2:1–3

    Article  CAS  Google Scholar 

  • Swiezawska B, Jaworski K, Szewczuk P, Pawe A, Szmidt-Jaworska A (2015) Identification of a Hippeastrum hybridum guanylyl cyclase responsive to wounding and pathogen infection. J Plant Physiol 189:77–86

    Article  CAS  PubMed  Google Scholar 

  • Tang WJ, Stanzel M, Gilman AG (1995) Truncation and alanine-scanning mutants of type I adenylyl cyclase. Biochemistry 34:14563–14572

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker CL, Hurley JH, Miller TR, Hurley JB (1998) Two amino acid substitutions convert a guanylyl cyclase, RetGC-1, into an adenylyl cyclase. Proc Natl Acad Sci USA 95:5993–5997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turek I, Marondedze C, Wheeler JI, Gehring C, Irving HR (2014) Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress. Front Plant Sci 5:661

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Gehring C, Cahill DM, Irving HR (2007) Plant natriuretic peptide active site determination and effects on cGMP and cell volume regulation. Funct Plant Biol 34:645–653

    Article  CAS  Google Scholar 

  • Wang G, Ellendorff U, Kemp B, Mansfield JW, Forsyth A, Mitchell K, Zipfel C, De Wit PJGM, Bastas K, Liu C, Woods-Tor A (2008) A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis. Plant Physiol 147:503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YH, Ahmar H, Irving HR (2010) Induction of apoptosis by plant natriuretic peptides in rat cardiomyoblasts. Peptides 31:1213–1218

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Gehring C, Irving HR (2011) Plant natriuretic peptides are apoplastic and paracrine stress response molecules. Plant Cell Physiol 52:837–850

    Article  CAS  PubMed  Google Scholar 

  • Yoo S, Cho Y, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40

    Article  Google Scholar 

  • Zois NE, Bartels ED, Hunter I, Kousholt BS, Olsen LH, Goetze JP (2014) Natriuretic peptides in cardiometabolic regulation and disease. Nat Rev Cardiol 11:403–412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Lee Staff for critical reading of the manuscript. We also acknowledge Dr Misjudeen Raji (Analytical Core Laboratory, KAUST) for his technical assistance in the MS determination of cyclic nucleotides’ content.

Authors contribution

C.G. conceived of the project, C.G. and I.T. planned the experiments, I.T. performed the experiments and both authors wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Gehring.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1744 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turek, I., Gehring, C. The plant natriuretic peptide receptor is a guanylyl cyclase and enables cGMP-dependent signaling. Plant Mol Biol 91, 275–286 (2016). https://doi.org/10.1007/s11103-016-0465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0465-8

Keywords

Navigation