Skip to main content
Log in

New insight into the catalytic properties of rice sucrose synthase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and uridine diphosphate (UDP) into fructose and UDP-glucose, is a key enzyme in sucrose metabolism in higher plants. SuS belongs to family 4 of the glycosyltransferases (GT4) and contains an E-X7-E motif that is conserved in members of GT4 and two other GT families. To gain insight into the roles of this motif in rice sucrose synthase 3 (RSuS3), the two conserved glutamate residues (E678 and E686) in this motif and a phenylalanine residue (F680) that resides between the two glutamate residues were changed by site-directed mutagenesis. All mutant proteins maintained their tetrameric conformation. The mutants E686D and F680Y retained partial enzymatic activity and the mutants E678D, E678Q, F680S, and E686Q were inactive. Substrate binding assays indicated that UDP and fructose, respectively, were the leading substrates in the sucrose degradation and synthesis reactions of RSuS3. Mutations on E678, F680, and E686 affected the binding of fructose, but not of UDP. The results indicated that E678, F680, and E686 in the E-X7-E motif of RSuS3 are essential for the activity of the enzyme and the sequential binding of substrates. The sequential binding of the substrates implied that the reaction catalyzed by RSuS can be controlled by the availability of fructose and UDP, depending on the metabolic status of a tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdian PL, Lellouch AC, Gautier C, Ielpi L, Geremia RA (2000) Identification of essential amino acids in the bacterial α-mannosyltransferase AceA. J Biol Chem 275:40568–40575. doi:10.1074/jbc.M007496200

    Article  PubMed  CAS  Google Scholar 

  • Absmanner B, Schmeiser V, Kampf M, Lehle L (2010) Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an α1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide. Biochem J 426:205–217. doi:10.1042/BJ20091121

    Article  PubMed  CAS  Google Scholar 

  • Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Avigad G, Dey PM (1997) Carbohydrate metabolism: storage Carbohydrates. In: Dey PM, Harborne JB (eds) Plant biochemistry. Academic Press, London, pp 143–204. doi:10.1016/B978-012214674-9/50005-9

    Chapter  Google Scholar 

  • Barrero-Sicilia C, Hernando-Amado S, Gonzalez-Melendi P, Carbonero P (2011) Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley. Planta 234:391–403. doi:10.1007/s00425-011-1408-x

    Article  PubMed  CAS  Google Scholar 

  • Bologa KL, Fernie AR, Leisse A, Loureiro ME, Geigenberger P (2003) A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol 132:2058–2072

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acid Res 37:D233–D238. doi:10.1093/nar/gkn663

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen CY (2010) Analysis of the cellulose synthase genes associated with primary cell wall synthesis in Bambusa oldhamii. Dissertation, University Taiwan University

  • Cid E, Gomis RR, Geremia RA, Guinovart JJ, Ferrer JC (2000) Identification of two essential glutamic acid residues in glycogen synthase. J Biol Chem 275:33614–33621. doi:10.1074/jbc.M005358200

    Article  PubMed  CAS  Google Scholar 

  • Curatti L, Porchia AC, Herrera-Estrella L, Salerno GL (2000) A prokaryotic sucrose synthase gene (susA) isolated from a filamentous nitrogen-fixing cyanobacterium encodes a protein similar to those of plants. Planta 211:729–735

    Article  PubMed  CAS  Google Scholar 

  • Curatti L, Giarrocco L, Salerno GL (2006) Sucrose synthase and RuBisCo expression is similarly regulated by the nitrogen source in the nitrogen-fixing cyanobacterium Anabaena sp. Planta 223:891–900. doi:10.1007/s00425-005-0142-7

    Article  PubMed  CAS  Google Scholar 

  • Diricks M, De Bruyn F, Van Daele P, Walmagh M, Desmet T (2015) Identification of sucrose synthase in nonphotosynthetic bacteria and characterization of the recombinant enzymes. Appl Microbiol Biot. doi:10.1007/s00253-015-6548-7

    Google Scholar 

  • Fujii S, Hayashi T, Mizuno K (2010) Sucrose synthase is an integral component of the cellulose synthesis machinery. Plant Cell Physiol 51:294–301. doi:10.1093/pcp/pcp190

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Stitt M (1993) Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189:329–339. doi:10.1007/BF00194429

    Article  PubMed  CAS  Google Scholar 

  • Gordon AJ, Minchin FR, James CL, Komina O (1999) Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol 120:867–878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hatmi S, Trotel-Aziz P, Villaume S, Couderchet M, Clement C, Aziz A (2014) Osmotic stress-induced polyamine oxidation mediates defence responses and reduces stress-enhanced grapevine susceptibility to Botrytis cinerea. J Exp Bot 65:75–88. doi:10.1093/jxb/ert351

    Article  PubMed  CAS  Google Scholar 

  • Kampf M, Absmanner B, Schwarz M, Lehle L (2009) Biochemical characterization and membrane topology of Alg2 from Saccharomyces cerevisiae as a bifunctional α1,3- and 1,6-mannosyltransferase involved in lipid-linked oligosaccharide biosynthesis. J Biol Chem 284:11900–11912. doi:10.1074/jbc.M806416200

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleczkowski LA, Geisler M, Ciereszko I, Johansson H (2004) UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol 134:912–918. doi:10.1104/pp.103.036053

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246. doi:10.1016/j.pbi.2004.03.014

    Article  PubMed  CAS  Google Scholar 

  • Koch KE, Nolte KD, Duke ER, McCarty DR, Avigne WT (1992) Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4:59–69. doi:10.1105/tpc.4.1.59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kostova Z, Yan BC, Vainauskas S, Schwartz R, Menon AK, Orlean P (2003) Comparative importance in vivo of conserved glutamate residues in the EX7E motif retaining glycosyltransferase Gpi3p, the UDP-GlcNAc-binding subunit of the first enzyme in glycosylphosphatidylinositol assembly. Eur J Biochem/FEBS 270:4507–4514

    Article  CAS  Google Scholar 

  • Mega TL, Cortes S, Vanetten RL (1990) The 18O-isotope shift in 13C nuclear magnetic-resonance spectroscopy: 13. Oxygen exchange at the anomeric carbon of deuterium-glucose, deuterium-mannose, and deuterium-fructose. J Org Chem 55:522–528. doi:10.1021/Jo00289a026

    Article  CAS  Google Scholar 

  • Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, Viale AM, Etxeberria E, Alonso-Casajus N, Pozueta-Romero J (2005) Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol 46:1366–1376. doi:10.1093/pcp/pci148

    Article  PubMed  CAS  Google Scholar 

  • Nguyen-Quoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  PubMed  CAS  Google Scholar 

  • Nichols DJ, Keeling PL, Spalding M, Guan H (2000) Involvement of conserved aspartate and glutamate residues in the catalysis and substrate binding of maize starch synthase. Biochemistry 39:7820–7825

    Article  PubMed  CAS  Google Scholar 

  • Porchia AC, Curatti L, Salerno GL (1999) Sucrose metabolism in cyanobacteria: sucrose synthase from Anabaena sp. strain PCC 7119 is remarkably different from the plant enzymes with respect to substrate affinity and amino-terminal sequence. Planta 210:34–40

    Article  PubMed  CAS  Google Scholar 

  • Song D, Shen J, Li L (2010) Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytol 187:777–790. doi:10.1111/j.1469-8137.2010.03315.x

    Article  PubMed  CAS  Google Scholar 

  • Su JC (1977) Purification and characterization of sucrose synthetase from the shoot of bamboo Leleba oldhami. Plant Physiol 60:17–21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tang T, Xie H, Wang Y, Lu B, Liang J (2009) The effect of sucrose and abscisic acid interaction on sucrose synthase and its relationship to grain filling of rice (Oryza sativa L.). J Exp Bot 60:2641–2652. doi:10.1093/jxb/erp114

    Article  PubMed  CAS  Google Scholar 

  • Van Handel E (1968) Direct microdetermination of sucrose. Anal Biochem 22:280–283

    Article  PubMed  Google Scholar 

  • Wang F, Smith AG, Brenner ML (1994) Temporal and spatial expression pattern of sucrose synthase during tomato fruit development. Plant Physiol 104:535–540

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wang H, Sui X, Guo J, Wang Z, Cheng J, Ma S, Li X, Zhang Z (2014) Antisense suppression of cucumber (Cucumis sativus L.) sucrose synthase 3 (CsSUS3) reduces hypoxic stress tolerance. Plant Cell Environ 37:795–810. doi:10.1111/pce.12200

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Wei P, Wu M, Xu Y, Li F, Luo Z, Zhang J, Chen A, Xie X, Cao P, Lin F, Yang J (2015) Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns. Planta 242:153–166. doi:10.1007/s00425-015-2297-1

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol 35:253–289. doi:10.1080/10409230008984165

    Article  CAS  Google Scholar 

  • Wu R, Asencion Diez MD, Figueroa CM, Machtey M, Iglesias AA, Ballicora MA, Liu D (2015) The crystal structure of Nitrosomonas europaea sucrose synthase reveals critical conformational changes and insights into sucrose metabolism in prokaryotes. J Bacteriol 197:2734–2746. doi:10.1128/JB.00110-15

    Article  PubMed  CAS  Google Scholar 

  • Yep A, Ballicora MA, Preiss J (2006) The ADP-glucose binding site of the Escherichia coli glycogen synthase. Arch Biochem Biophys 453:188–196. doi:10.1016/j.abb.2006.07.003

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Anderson S, Zhang Y, Garavito RM (2011) The structure of sucrose synthase-1 from Arabidopsis thaliana and its functional implications. J Biol Chem 286:36108–36118. doi:10.1074/jbc.M111.275974

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Science Council, the Republic of China (Taiwan).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chien-Chih Yang or Ai-Yu Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Supplementary material 2 (PPTX 1253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YC., Hsiang, EC., Yang, CC. et al. New insight into the catalytic properties of rice sucrose synthase. Plant Mol Biol 90, 127–135 (2016). https://doi.org/10.1007/s11103-015-0401-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0401-3

Keywords

Navigation