Skip to main content
Log in

Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Soybean (Glycine max) is one of the most important crops in the world, and its yield is largely determined by grain weight and grain size. However, the genes that regulate soybean seed size have not been identified. CYP78A, which is highly conserved within terrestrial plants, regulates organ development. In Arabidopsis, AtCYP78A5/KLU has been shown to determine seed size. In the present study, soybean CYP78A72 (GmCYP78A72), one of the orthologs of KLU, was over-expressed in both Arabidopsis and soybean to examine its function in plant development. GmCYP78A72 heterologous expression in Arabidopsis resulted in enlarged sepals, petals, seeds and carpel. Over-expression of GmCYP78A72 in soybean resulted in increased pea size, which is an extremely desirable trait for enhancing productivity. Moreover, knock-down of GmCYP78A72 does not reduce grain size. However, silencing of GmCYP78A57, GmCYP78A70 and GmCYP78A72 genes in triplet reduces the seed size significantly indicating functional redundancy of these three GmCYP78A genes. In conclusion, we investigated the role of CYP78A in soybean seed regulation, and our strategy can be effectively used to engineer large seed traits in soybean varieties as well as other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Affolter M, Basler K (2007) The Decapentaplegic morphogen gradient: from pattern formation to growth regulation. Nat Rev Genet 8:663–674

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP (2012) Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ 35:38–52

    Article  PubMed  CAS  Google Scholar 

  • Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856

    Article  PubMed  CAS  Google Scholar 

  • Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S, Werck-Reichhart D (2011) Cytochromes P450. The Arabidopsis book. ASPB, Rockville

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R (1990) Floricaula: a homeotic gene required for flower development in antirrhinum majus. Cell 63:1311–1322

    Article  PubMed  CAS  Google Scholar 

  • Coomes DA, Grubb PJ (2003) Colonization, tolerance, competition and seed-size variation within functional groups. Trends Ecol Evol 18:283–291

    Article  Google Scholar 

  • Day SJ, Lawrence PA (2000) Measuring dimensions: the regulation of size and shape. Development 127:2977–2987

    PubMed  CAS  Google Scholar 

  • Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lanhard M (2006) The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr Biol 16:272–279

    Article  PubMed  CAS  Google Scholar 

  • Fang W, Wang Z, Cui R, Li J, Li Y (2012) Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J 70:929–939

    Article  PubMed  CAS  Google Scholar 

  • Gómez JM (2004) Bigger is not always better: conflicting selective pressures on seed size in Quercus ilex. Evolution 58:71–80

    Article  PubMed  Google Scholar 

  • Halliday KJ (2004) Plant hormones: the interplay of brassinosteroids and auxin. Curr Biol 14:1008–1010

    Article  Google Scholar 

  • Horiguchi G, Ferjani A, Fujikura U, Tsukaya H (2006) Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 119:37–42

    Article  PubMed  Google Scholar 

  • Hu Z, Zhang H, Kan G, Ma D, Zhang D, Shi G, Hong D, Zhang G, Yu D (2013) Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica 141:247–254

    Article  PubMed  CAS  Google Scholar 

  • Imaishi H, Matsuo S, Swai E, Ohawa H (2000) CYP78A1 preferentially expressed in developing inflorescences of Zea mays encoded a cytochrome P450-dependent lauric acid 12-monooxygenase. Biosci Biotechnol Biochem 64:1696–1701

    Article  PubMed  CAS  Google Scholar 

  • Joshi N, Fass J (2011) Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33) [software]

  • Kandoth PK, Heinz R, Yeckel G, Gross NW, Juvale PS, Hill J, Whitham SA, Baum TJ, Mitchum MG (2013) A virus-induced gene silencing method to study soybean cyst nematode parasitism in Glycine max. BMC Res Notes 6:255. doi:10.1186/1756-0500-6-255

    Article  PubMed  PubMed Central  Google Scholar 

  • Katsumata T, Fukazawa J, Magome H, Jikumaru Y, Kamiya Y, Natsume M, Kawaide H, Yamaguchi S (2011) Involvement of the CYP78A subfamily of cytochrome P450 monooxygenases in protonema growth and gametophore formation in the moss Physcomitrella patens. Biosci Biotechnol Biochem 75:331–336

    Article  PubMed  CAS  Google Scholar 

  • Lam HM et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Denes Dev 22:1331–1336

    CAS  Google Scholar 

  • McKenna A et al (2010) The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh J, Nagato Y, Kurata N (2004) PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci USA 101:875–880

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nadeau JA, Zhang XS, Li J, O’Neill SD (1996) Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell 8:213–239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagasawa N, Hibara K, Heppard EP, Vander Velden KA, Luck S, Beatty M, Nagato Y, Sakai H (2013) GIANT EMBRYO encodes CYP78A13, required for proper size balance between embryo and endosperm in rice. Plant J 75:592–605

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR (2006) Plant cytochrome P450s from moss to poplar. Phytochem Rev 5:193–204

    Article  CAS  Google Scholar 

  • Niu Y, Xu Y, Liu XF, Yang SX, Wei SP, Xie FT, Zhang YM (2013) Association mapping for seed size and shape traits in soybean cultivars. Mol Breed 31:785–794

    Article  CAS  Google Scholar 

  • Rech EL, Vianna GR, Aragao FJ (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nat Protoc 3:410–418

    Article  PubMed  CAS  Google Scholar 

  • Rensing SA et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69

    Article  PubMed  CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  PubMed  CAS  Google Scholar 

  • Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M (2008) Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40:1023–1028

    Article  PubMed  CAS  Google Scholar 

  • Silvertown JW (1981) Seed size, life span, and germination date as coadapted features of plant life history. Am Nat 118:860–864

    Article  Google Scholar 

  • Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  PubMed  CAS  Google Scholar 

  • Sotelo-Silveira M, Cucinotta M, Chauvin AL, Chavez Montes RA, Colombo L, Marsch-Martinez N, de Folter S (2013) Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. Plant Physiol 162:779–799

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sundaresan V (2005) Control of seed size in plants. Proc Natl Acad Sci USA 102:17887–17888

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Li Y, Zhang H, Sun G, Zhang W, Qiu L (2015) Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Mol Biol Rep 42:489–496

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Hill WG (2002) Estimating F-statistics. Annu Rev Genet 36:721–750

    Article  PubMed  CAS  Google Scholar 

  • Xia T, Li N, Jack D, Li J, Andrei K, Michael WB, Gao F, Li Y (2013) The Ubiquitin receptor DA1 Interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. Plant Cell 25:3347–3359

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. CABIOS 13:555–556

    PubMed  CAS  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ye M, Zhang M, Yang S, Shao Q, An H, Cao Z, Feng X (2011) (2010) Optimization of biolistics transformation of embryonic tips of soybean (Glycine max) mature seeds. Soybean Sci 30:20–23

    CAS  Google Scholar 

  • Zhang C, Ghabrial SA (2006) Development of bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344:401–411

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Yang C, Whitham SA, Hill JH (2009) Development and use of an efficient DNA-based viral gene silencing vector for soybean. Mol Plant Microbe Interact 22:123–131

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Stefan Cerbin (Michigan State University) for critical reading of the manuscript. This work was supported by the National Nature Science Foundation of China (Grant Nos. 31171571 and 91131008) and the China National Transgenic Major Program (Grant No. 2014ZX0800943B) and was also supported by One Hundred Person Project of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianzhong Feng.

Ethics declarations

Conflict of interest

There are no conflicts of interest to be declared.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2015_392_MOESM1_ESM.tif

Figs. 1. Expression pattern of GmCYP78A in soybean. Total RNA was separately extracted from root, root nodules, inflorescence (3-5 mm young inflorescence), petals and sepals, leaf bud, mature leaves and tender pods (5 mm green pod) of soybean ecotype Williams82. We designated GmCYP78A70 expression in the mature leaves as the benchmark (a value of 1)

Figs. 2. Seed number of transgenic plants of Arabidopsis

Figs. 3. Pedigree of GmCYP78A72 over-expression transgenic plant. +: PCR positive; ↑: Seed size increased

Supplementary material 4 (DOCX 15 kb)

Supplementary material 5 (DOCX 18 kb)

Supplementary material 6 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Dai, A., Wei, H. et al. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol 90, 33–47 (2016). https://doi.org/10.1007/s11103-015-0392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0392-0

Keywords

Navigation