Skip to main content
Log in

Alterations of histone modifications at the senescence-associated gene HvS40 in barley during senescence

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The barley gene HvS40, encoding a putative regulator of leaf senescence, is strongly induced during leaf senescence. As shown by chromatin immunoprecipitation, euchromatic histone modification H3K9ac is added at promoter close to ATG and coding sequence of HvS40 after onset of senescence. In parallel, level of heterochromatic H3K9me2 decreases at this gene. Bisulfite sequencing revealed no DNA-methylation in this region, but a heavily methylated DNA-island, starting 664 bp upstream from translational start site in both, mature and senescent leaves. A decrease in DNA methylation in senescing leaves could be shown at one specific CpG motif at the end of this methylation island. In addition, global changes in chromatin structure during senescence were analyzed via immunocytology, revealing senescence-associated changes in spatial distribution of heterochromatic H3K9me2 patterns in the nuclei. Our results prove a senescence-specific mechanism, altering histone modification marks at distinct sequences of the senescence-associated gene HvS40 and altering distribution of heterochromatic areas in the nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aufsatz W, Mette MF, van der Winden J, Matzke M, Matzke AJM (2002) HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by doublestranded RNA. EMBO J 21:6832–6841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ay N, Irmler K, Fischer A, Uhlemann R, Reuter G, Humbeck K (2009) Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana. Plant J 58:333–346

    Article  CAS  PubMed  Google Scholar 

  • Ay N, Raum U, Balazadeh S, Seidensticker T, Fischer A, Reuter G, Humbeck K (2014a) Regulatory factors of leaf senescence are affected in Arabidopsis plants overexpressing the histone methyltransferase SUVH2. J Plant Growth Regul 33:119–136

    Article  CAS  Google Scholar 

  • Ay N, Janack B, Humbeck K (2014b) Epigenetic control of plant senescence and linked processes. J Exp Bot. doi:10.1093/jxb/eru132

    PubMed  Google Scholar 

  • Balazadeh S, Riano-Pachón DM, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10:63–75

    Article  PubMed  Google Scholar 

  • Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    Article  CAS  PubMed  Google Scholar 

  • Bauer MJ, Fischer RL (2011) Genome demethylation and imprinting in the endosperm. Curr Opin Plant Biol 14:162–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berger F, Gaudin V (2003) Chromatin dynamics and Arabidopsis development. Chromosome Res 11:277–304

    Article  CAS  PubMed  Google Scholar 

  • Bernatavichute YV, Zhang X, Cokus S, Pellegrini M, Jacobsen SE (2008) Genome-wide association of Histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS One 3:e3156. doi:10.1371/journal.pone.0003156

    Article  PubMed Central  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Breeze E, Harrison E, McHattie S et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brusslan JA, Alvarez-Canterbury AMR, Nair NU, Rice JC, Hitchler MJ, Pellegrini M (2012) Genome-wide evaluation of histone methylation changes associated with leaf senescence in Arabidopsis. PLoS One. doi:10.1371/journal.pone.0033151

    PubMed Central  PubMed  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  • Charron JBF, He H, Elling AA, Denga XW (2009) Dynamic landscapes of four histone modifications during deetiolation in Arabidopsis. Plant Cell 21:3732–3748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chomczynski P, Mackey K (1995) Modification of the TRI reagent procedure for isolation of RNA from polysaccharide- and proteoglycan-rich sources. Biotechniques 19:942–945

    CAS  PubMed  Google Scholar 

  • Christiansen MW, Gregersen PL (2014) Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves. J Exp Bot. doi:10.1093/jxb/eru046

    PubMed Central  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G (2009) Senescing cells share common features with dedifferentiating cells. Rejuvenation Res 12:435–443

    Article  CAS  PubMed  Google Scholar 

  • De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA (2013) Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY) 5(12):867–883

    Google Scholar 

  • Dong F, Jiang J (1998) Non-Rabl patterns of centromere and telomere distribution in the interphase nuclei of plant cells. Chromosome Res 6:551–558

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Lib H, Weia Q, Zhaob X, Wanga C, Zhub Q, Yia Y, Xua W, Liuc XS, Jinb W, Sua Z (2013) Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. Japonica. Mol Plant 6:1463–1472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feller U, Kleist M (1986) Senescence and metabolism in annual plants. In: Lambers H, Neeterson JJ, Stule I (eds) Fundamental, ecological and agricultural aspects of nitrogen metabolism in higher plants. Springer, Dordrecht, pp 219–234

    Chapter  Google Scholar 

  • Finnegan EJ, Dennis ES (2007) Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol 17:1978–1983

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Kilbienski I, Miao Y, Roitsch T, Zschiesche W, Humbeck K, Krupinska K (2010) Nuclear targeted AtS40 modulates senescence associated gene expression in Arabidopsis thaliana during natural development and in darkness. Plant Mol Biol 73:379–390

    Article  CAS  PubMed  Google Scholar 

  • Foerster AM, Mittelsten Scheid O (2010) Analysis of DNA methylation in plants by bisulfite sequencing. Plant Epigenet Methods Mol Biol 631:1–11

    CAS  Google Scholar 

  • Forde BG, Heyworth A, Pywell J, Kreis M (1985) Nucleotide sequence of a B1 hordein gene and the identification of possible upstream regulatory elements in endosperm storage protein genes from barley, wheat and maize. Nucleic Acids Res 13:7327–7339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fransz P, de Jong JH, Lysak M, Ruffini Castiglione M, Schubert I (2002) Interphase chromosomes in Arabidopsis are organized as well defined chromocenters from which euchromatin loops emanate. PNAS 99:14584–14589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fuchs J, Demidov D, Houben A, Schubert I (2006) Chromosomal histone modification patterns: from conservation to diversity. Trends Plant Sci 11:199–208

    Article  CAS  PubMed  Google Scholar 

  • Fukui K, Kakeda K (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33:450–458

    Article  Google Scholar 

  • Gendrel AV, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297:1871–1873

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    Article  CAS  PubMed  Google Scholar 

  • Gruntman E, Qi Y, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R (2008) Kismeth: analyzer of plant methylation states through bisulfite sequencing. BMC Bioinform 9:371–384

    Article  Google Scholar 

  • Guo Y, Gan SH (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Cai Z, Gan SH (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Gutzat R, Mittelsten Scheid O (2012) Epigenetic responses to stress: triple defense? Curr Opin Plant Biol 15:568–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haussühl KK (1998) Charakterisierung der Blattseneszenz von Hordeum vulgare L. unter besonderer Berücksichtigung des Gens HvS40. Doctoral thesis, Mathematisch-Naturwissenschaftliche Fakultät. Christian-Albrechts-Universität, Kiel, p 63

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33:967–973

    Article  CAS  PubMed  Google Scholar 

  • Humbeck K (2013) Epigenetic and small RNA regulation of senescence. Plant Mol Biol 82:529–537

    Article  CAS  PubMed  Google Scholar 

  • Humbeck K, Quast S, Krupinska K (1996) Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ 19:337–344

    Article  CAS  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  CAS  PubMed  Google Scholar 

  • Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, Cheng X, Schubert I, Jenuwein T, Jacobsen SE (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112:308–315

    Article  CAS  PubMed  Google Scholar 

  • Jerzmanowski A (2007) SWI/SNF chromatin remodeling and linker histones in plants. Biochim Biophys Acta 1769:330–345

    Article  CAS  PubMed  Google Scholar 

  • Johnson LM, Cao X, Jacobsen SE (2002) Interplay between two epigenetic marks: DNA methylation and histone H3 lysine 9 methylation. Curr Biol 12:1360–1367

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kollhoff A, Bergmann A, Stubbs L (2003) Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3. Hum Mol Genet 12:233–245

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53:847–856

    Article  CAS  PubMed  Google Scholar 

  • Kleber-Janke T, Krupinska K (1997) Isolation of cDNA clones for genes showing enhanced expression in barley leaves during dark-induced senescence as well as during senescence under field conditions. Planta 203:332–340

    Article  CAS  PubMed  Google Scholar 

  • Krupinska K, Haussühl K, Schäfer A, van der Kooij TAW, Leckband G, Lörz H, Falk J (2002) A novel nucleus-targeted protein is expressed in barley leaves during senescence and pathogen infection. Plant Physiol 130:1172–1180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krupinska K, Dähnhardt D, Fischer-Kilbienski I, Kucharewicz W, Scharrenberg C, Trösch M, Buck F (2014) Identification of WHIRLY1 as a factor binding to the promoter of the stress- and senescence-associated gene HvS40. J Plant Growth Regul 33:91–105

    Article  CAS  Google Scholar 

  • Laloum T, Mita SD, Gamas P, Baudin M, Niebel A (2013) CCAAT-box binding transcription factors in plants: y so many? Trends Plant Sci 18(3):157–166

    Article  CAS  PubMed  Google Scholar 

  • Lauria M, Rossi V (2011) Epigenetic control of gene regulation in plants. Biochim Biophys Acta 1809:369–378

    Article  CAS  PubMed  Google Scholar 

  • Law JL, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li G, Hall TC, Holmes-Davis R (2002) Plant chromatin: development and gene control. Bioessays 24:234–243

    Article  CAS  PubMed  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Laun T, Zimmermann P, Zentgraf U (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  • Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15:204–210

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Yu W, Whitehead J, Xu J, Lezcano M, Pack S, Kanduri C, Kanduri M, Ginjala V, Vostrov A, Quitschke W, Chernukhin I, Klenova E, Lobanenkov V, Ohlsson R (2004) The binding sites for the chromatin insulator protein CTCF map to DNA methylation-free domains genome-wide. Genome Res 14:1594–1602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T, Reuter G (2005) Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. EMBO J 24:1418–1429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noguchi J, Fukui K (1995) Chromatin arrangements in intact interphase nuclei examined by laser confocal microscopy. J Plant Res 108:209–216

    Article  Google Scholar 

  • Okitsu CY, Hsieh CL (2007) DNA methylation dictates histone H3K4 methylation. Mol Cell Biol 27:2746–2757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES, Peacock WJ, Trevaskis B (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci 106:8386–8391

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203

    Article  CAS  PubMed  Google Scholar 

  • Perini G, Diolaiti D, Porro A, Della Valle G (2005) In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci 102:12117–12122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF, Mantovani R (2012) The promiscuous life of plant nuclear factor Y transcription factors. Plant Cell 24:4777–4792

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfluger J, Wagner D (2007) Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol 10:645–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eukaryotic transcriptional elements. CABIOS 7:203–206

    CAS  PubMed  Google Scholar 

  • Rabl C (1885) Über Zelltheilung. In: Gegenbauer C (ed) Morphologisches Jahrbuch 10. Band. Verlag von Wilhelm Engelmann, Leipzig, pp 214–330

  • Russo VEA, Martienssen RA, Riggs AD (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Schmitz RJ, Sung S, Amasino RM (2008) Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana. Proc Natl Acad Sci 105:411–416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schubert I, Shaw P (2011) Organization and dynamics of plant interphase chromosomes. Trends Plant Sci 16:273–281

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Hills MJ, Lister C, Dean C, Dennis ES, Peacock WJ (2008) Resetting of FLOWERING LOCUS C expression after epigenetic repression by vernalization. Proc Natl Acad Sci 105:2214–2219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song Y, Ji D, Li Shuo, Wang P, Li Q, Xiang F (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One. doi:10.1371/journal.pone.0041274

    Google Scholar 

  • Sørensen MB (1992) Methylation of B-hordein genes in barley endosperm is inversely correlated with gene activity and affected by the regulatory gene Lys3. Proc Natl Acad Sci USA 89:4119–4123

    Article  PubMed Central  PubMed  Google Scholar 

  • Sørensen MB, Müller M, Skerritt J, Simpson D (1996) Hordein promoter methylation and transcriptional activity in wild-type and mutant barley endosperm. Mol Gen Genet 250:750–760

    Article  PubMed  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427:159–164

    Article  CAS  PubMed  Google Scholar 

  • Sung S, He Y, Eshoo TW, Tamada Y, Johnson L, Nakahigashi K, Goto K, Jacobsen SE, Amasino RM (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1. Nat Genet 38:706–710

    Article  CAS  PubMed  Google Scholar 

  • Wagner D (2003) Chromatin regulation of plant development. Curr Opin Plant Biol 6:20–28

    Article  CAS  PubMed  Google Scholar 

  • Wako T, Houben A, Furushima-Shimogawara R, Belyaev ND, Fukui K (2003) Centromere-specific acetylation of histone H4 in barley detected through three-dimensional microscopy. Plant Mol Biol 51:533–541

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Denga XW (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–1069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wollmann H, Berger F (2012) Epigenetic reprogramming during plant reproduction and seed development. Curr Opin Plant Biol 15:63–69

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu C-W, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59:225–234

    Article  CAS  PubMed  Google Scholar 

  • Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010) Local DNA hypomethylation activates genes in rice endosperm. PNAS 107(43):18729–18734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, He K, Charron JBF, Elling AA, Deng XW (2010) Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol 72:585–595

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Tremblay N, Liang Y (2012) Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Can J Soil Sci 92:645–648

    Article  Google Scholar 

  • Zilberman D, Henikoff S (2007) Genome-wide analysis of DNA methylation patterns. Development 134:3959–3965

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Katrin Kittlaus and Carola Kretschmer for her technical support during the sequencing procedure of the bisulfite clones. This work was supported by the German Research Foundation (DFG, Hu 376/13-2 and SFB 648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Humbeck.

Additional information

Nicole Ay and Bianka Janack have contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Immunohistochemical analyses of senescence-specific nuclear distribution of the euchromatic H3K9ac histone modification during senescence in Arabidopsis thaliana. Nuclei were isolated of three different developmental stages as described in Ay et al. (2009). Representative DAPI-stained nuclei are shown in the upper part. The green fluorescence of the immunodecorated histone modification H3K9ac in these nuclei is shown in the middle part. The corresponding merged DAPI and immunofluorescence pictures are shown in the lower part. Scale bars: 10 µm (JPEG 145 kb)

Figure S2

DNA methylation pattern of the HvS40 fragment S40-asP in mature and senescent barley primary leaves. Position of the S40-asP fragment analyzed via bisulfite sequencing at the antisense strand of the distal promoter region of HvS40 is shown in the upper part. DNA methylation pattern of the S40-asP fragment in both investigated developmental stages is shown in the lower part. Ten representative clones from two technical replicates are shown. Each line represents one unique ‘‘non-sister’’ individual bisulfite sequencing result. Only cytosines are depicted. Red circles, blue rectangles and green triangles represent cytosines in the CpG, CpHpG or the CpHpH context, respectively. Methylated cytosines are depicted as filled and non-methylated cytosines as unfilled symbols. The numbers below give the Position of the cytosines in the analyzed fragment (JPEG 1243 kb)

Figure S3

DNA methylation pattern of the HvS40 fragment S40-sPII in mature and senescent barley primary leaves. Position of the S40-sPII fragment analyzed via bisulfite sequencing at the sense strand of the promoter region of HvS40 is shown in the upper part. DNA methylation pattern of the S40-sPII fragment in both investigated developmental stages is shown in the lower part. Ten representative clones from two technical replicates are shown. Each line represents one unique ‘‘non-sister’’ individual bisulfite sequencing result. Only cytosines are depicted. Red circles, blue rectangles and green triangles represent cytosines in the CpG, CpHpG or the CpHpH context, respectively. Methylated cytosines are depicted as filled and non-methylated cytosines as unfilled symbols. The numbers below give the Position of the cytosines in the analyzed fragment (JPEG 1208 kb)

Figure S4

DNA methylation pattern of the HvS40 fragment S40-sC in mature and senescent barley primary leaves. Position of the S40-sC fragment analyzed via bisulfite sequencing at the sense strand of HvS40 is shown in the upper part. DNA methylation pattern of the S40-sC fragment is shown for both investigated developmental stages and also for non-methylated plasmid DNA (Control) in the lower part. Ten representative clones from either four (M and S2) or two (Control) biological replicates are shown. Each line represents one unique ‘‘non-sister’’ individual bisulfite sequencing result. Only cytosines are depicted. Red circles, blue rectangles and green triangles represent cytosines in the CpG, CpHpG or the CpHpH context, respectively. Methylated cytosines are depicted as filled and non-methylated cytosines as unfilled symbols. The numbers below give the Position of the cytosines in the analyzed fragment (JPEG 1774 kb)

Figure S5

DNA methylation pattern of the hordein gene HvHOR2 (Acc.no X03103) promoter fragment in mature and senescent barley primary leaves. Position of the HvHOR2 fragment analyzed via bisulfite sequencing at the sense strand of the distal promoter region of HvHOR2 is shown in the upper part. DNA methylation pattern of the HvHOR2 fragment is shown for both investigated developmental stages and also for non-methylated plasmid DNA (Control) in the lower part. Ten representative clones from either four (M and S2) or two (Control) biological replicates are shown. Each line represents one unique ‘‘non-sister’’ individual bisulfite sequencing result. Only cytosines are depicted. Red circles, blue rectangles and green triangles represent cytosines in the CpG, CpHpG or the CpHpH context, respectively. Methylated cytosines are depicted as filled and non-methylated cytosines as unfilled symbols. The numbers below give the Position of the cytosines in the analyzed fragment (JPEG 1570 kb)

Supplementary material 6 (DOCX 14 kb)

Supplementary material 7 (DOCX 23 kb)

Supplementary material 8 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ay, N., Janack, B., Fischer, A. et al. Alterations of histone modifications at the senescence-associated gene HvS40 in barley during senescence. Plant Mol Biol 89, 127–141 (2015). https://doi.org/10.1007/s11103-015-0358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0358-2

Keywords

Navigation