Skip to main content
Log in

Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Dendrobium officinale is a traditional Chinese medicinal plant. The stems of D. officinale contain mannan polysaccharides, which are promising bioactive polysaccharides for use as drugs. However, the genes involved in the biosynthesis of mannan polysaccharides in D. officinale have not yet been identified. In this study, four digital gene expression profiling analyses were performed on developing stems of greenhouse-grown D. officinale to identify such genes. Based on the accumulation of mannose and on gene expression levels, eight CELLULOSE SYNTHASE-LIKE A genes (CSLA), which are highly likely to be related to the biosynthesis of bioactive mannan polysaccharides, were identified from the differentially expressed genes database. In order to further analyze these DoCSLA genes, a full-length cDNA of each was obtained by RACE. The eight genes, belonging to the CSLA family of the CesA superfamily, contain conserved domains of the CesA superfamily. Most of the genes, which were highly expressed in the stems of D. officinale, were related to abiotic stress. Our results suggest that the CSLA family genes from D. officinale are involved in the biosynthesis of bioactive mannan polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso-Sande M, Teijeiro-Osorio D, Remuñán-López C, Alonso MJ (2009) Glucomannan, a promising polysaccharide for biopharmaceutical purposes. Eur J Pharm Biopharm 72:453–462

    Article  CAS  PubMed  Google Scholar 

  • Aquino RS, Grativol C, Mourão PA (2011) Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS One 6:e18862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R, Cork A, Glover AJ, Redmond J, Williamson RE (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  CAS  PubMed  Google Scholar 

  • Blanca JM, Pascual L, Ziarsolo P, Nuez F, Cañizares J (2011) ngs_backbone: a pipeline for read cleaning, mapping and SNP calling using next generation sequence. BMC Genomics 12:285

    Article  PubMed Central  PubMed  Google Scholar 

  • Breton C, Imberty A (1999) Structure/function studies of glycosyltransferases. Curr Opin Struct Biol 9:563–571

    Article  CAS  PubMed  Google Scholar 

  • Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A (2006) Structures and mechanisms of glycosyltransferases. Glycobiology 16:29R–37R

    Article  CAS  PubMed  Google Scholar 

  • Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol 154:1017–1023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen X, Guo S (2001) Advances in the research of constituents and pharmacology of Dendrobium. Nat Prod Res Dev 13:70–75

    CAS  Google Scholar 

  • Clifford SC, Arndt SK, Popp M, Jones HG (2002) Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): localization, composition and physiological roles during drought-stress. J Exp Bot 53:131–138

    Article  CAS  PubMed  Google Scholar 

  • Comino ML, de Felipe MR, Fernandez-Pascual M, Martin L (1997) Effect of drought stress on carbohydrate metabolism in nodules of Lupinus angustifolius. In: Eukaryotism Symbiosis. Springer, pp 449–456

  • Davis J, Brandizzi F, Liepman AH, Keegstra K (2010) Arabidopsis mannan synthase CSLA9 and glucan synthase CSLC4 have opposite orientations in the Golgi membrane. Plant J 64:1028–1037

    Article  CAS  PubMed  Google Scholar 

  • De Caroli M, Lenucci MS, Di Sansebastiano G-P, Tunno M, Montefusco A, Dalessandro G, Piro G (2014) Cellular localization and biochemical characterization of a chimeric fluorescent protein fusion of Arabidopsis Cellulose Synthase-Like A2 inserted into Golgi membrane. Scientific World J 2014:7

    Article  Google Scholar 

  • de Lima RB, dos Santos TB, Vieira LG, Ferrarese MDLL, Ferrarese-Filho O, Donatti L, Boeger MR, de Oliveira Petkowicz CL (2014) Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells. Carbohydr Polym 112:686–694

    Article  PubMed  Google Scholar 

  • Dhugga KS (2012) Biosynthesis of non-cellulosic polysaccharides of plant cell walls. Phytochemistry 74:8–19

    Article  CAS  PubMed  Google Scholar 

  • Dhugga KS, Barreiro R, Whitten B, Stecca K, Hazebroek J, Randhawa GS, Dolan M, Kinney AJ, Tomes D, Nichols S, Anderson P (2004) Guar seed beta-mannan synthase is a member of the cellulose synthase super gene family. Science 303:363–366

    Article  CAS  PubMed  Google Scholar 

  • Duan J, Kasper DL (2011) Oxidative depolymerization of polysaccharides by reactive oxygen/nitrogen species. Glycobiology 21:401–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dubey RS, Singh AK (2006) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biol Plant 42:233–239

    Article  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Fan YJ, He XJ, Zhou SD, Luo AX, He T, Chun Z (2009) Composition analysis and antioxidant activity of polysaccharide from Dendrobium denneanum. Int J Biol Macromol 45:169–173

  • Femenia A, Sánchez ES, Simal S, Rosselló C (1999) Compositional features of polysaccharides from Aloe vera (Aloe barbadensis Miller) plant tissues. Carbohydr Polym 39:109–117

    Article  CAS  Google Scholar 

  • Fincher GB (2009) Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol 149:27–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fry SC, Dumville JC, Miller JG (2001) Fingerprinting of polysaccharides attacked by hydroxyl radicals in vitro and in the cell walls of ripening pear fruit. Biochem J 357:729–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Gille S, Cheng K, Skinner ME, Liepman AH, Wilkerson CG, Pauly M (2011) Deep sequencing of voodoo lily (Amorphophallus konjac): an approach to identify relevant genes involved in the synthesis of the hemicellulose glucomannan. Planta 234:515–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goubet F, Misrahi A, Park SK, Zhang Z, Twell D, Dupree P (2003) AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis. Plant Physiol 131:547–557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goubet F, Barton CJ, Mortimer JC, Yu X, Zhang Z, Miles GP, Richens J, Liepman AH, Seffen K, Dupree P (2009) Cell wall glucomannan in Arabidopsis is synthesised by CSLA glycosyltransferases, and influences the progression of embryogenesis. Plant J 60:527–538

    Article  CAS  PubMed  Google Scholar 

  • Handford MG, Baldwin TC, Goubet F, Prime TA, Miles J, Yu X, Dupree P (2003) Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana. Planta 218:27–36

    Article  CAS  PubMed  Google Scholar 

  • Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsieh YSY, Chien C, Liao SKS, Liao SF, Hung WT, Yang WB, Lin CC, Cheng TJR, Chang CC, Fang JM, Wong CH (2008) Structure and bioactivity of the polysaccharides in medicinal plant Dendrobium huoshanense. Bioorg Med Chem. 16:6054–6068

    Article  CAS  PubMed  Google Scholar 

  • Hua YF, Zhang M, Fu CX, Chen ZH, Chan GY (2004) Structural characterization of a 2-O-acetylglucomannan from Dendrobium officinale stem. Carbohydr Res 339:2219–2224

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Chen S, Luo Y (2009) Taxonomic revision of Dendrobium moniliforme complex (Orchidaceae). Sci Hortic 120:143–145

    Article  Google Scholar 

  • Kerepesi I, Galiba G (2000) Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop Sci 40:482–487

    Article  CAS  Google Scholar 

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  CAS  PubMed  Google Scholar 

  • Lerouxel O, Cavalier DM, Liepman AH, Keegstra K (2006) Biosynthesis of plant cell wall polysaccharides—a complex process. Curr Opin Plant Biol 9:621–630

    Article  CAS  PubMed  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Liepman AH, Wilkerson CG, Keegstra K (2005) Expression of cellulose synthase-like (Csl) genes in insect cells reveals that CslA family members encode mannan synthases. Proc Natl Acad Sci USA 102:2221–2226

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li JJ, Bi HT, Yan JH, Sun F, Fan SS, Cao G, Zhou YF, Chen XG (2012) Comparative analysis of polysaccharides from two ecological types of Leymus chinensis. Chem Res Chin Univ 28:677–681

  • Luo AX, He XJ, Zhou SD, Fan YJ, Luo AS, Chun Z (2010) Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydr Polym 79:1014–1019

  • Meng LZ, Lv GP, Hu DJ, Cheong KL, Xie J, Zhao J, Li SP (2013) Effects of polysaccharides from different species of Dendrobium (Shihu) on macrophage function. Molecules 18:5779–5791

    Article  PubMed  Google Scholar 

  • Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79:165–178

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Petkowicz CLdO, Reicher F, Chanzy H, Taravel FR, Vuong R (2001) Linear mannan in the endosperm of Schizolobium amazonicum. Carbohydr Polym 44:107–112

    Article  CAS  Google Scholar 

  • Reyes F, Orellana A (2008) Golgi transporters: opening the gate to cell wall polysaccharide biosynthesis. Curr Opin Plant Biol 11:244–251

    Article  CAS  PubMed  Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant Physiol 124:495–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sandhu AP, Randhawa GS, Dhugga KS (2009) Plant cell wall matrix polysaccharide biosynthesis. Mol Plant 2:840–850

    Article  CAS  PubMed  Google Scholar 

  • Saxena I, Brown JR (1995) Identification of a second cellulose synthase gene (acsAII) in Acetobacter xylinum. J Bacteriol 177:5276–5283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun YD, Wang ZH, Ye QS (2013) Composition analysis and anti-proliferation activity of polysaccharides from Dendrobium chrysotoxum. Int J Biol Macromol 62:291–295

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor NG, Howells RM, Huttly AK, Vickers K, Turner SR (2003) Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc Natl Acad Sci USA 100:1450–1455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • The State Pharmacopoeia Commission of People’s Republic of China (2010) Pharmacopoeia of the People’s Republic of China, vol 1. Chemical Industry Press, Beijing, pp 265–266 (Chinese edn)

    Google Scholar 

  • Tsai MC, Song TY, Shih PH, Yen GC (2007) Antioxidant properties of water-soluble polysaccharides from Antrodia cinnamomea in submerged culture. Food Chem 104:1115–1122

    Article  CAS  Google Scholar 

  • Wang CY, Chiou CY, Wang HL, Krishnamurthy R, Venkatagiri S, Tan J, Yeh KW (2008) Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • Wang HT, Liu IH, Yeh TF (2012a) Immunohistological study of mannan polysaccharides in poplar stem. Cellul Chem Technol 46:149–155

    CAS  Google Scholar 

  • Wang Y, Alonso AP, Wilkerson CG, Keegstra K (2012b) Deep EST profiling of developing fenugreek endosperm to investigate galactomannan biosynthesis and its regulation. Plant Mol Biol 79:243–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wozniewski T, Blaschek W, Franz G (1992) Isolation and characterization of an endo-β-mannanase of Lilium testaceum bulbs. Phytochemistry 31:3365–3370

    Article  CAS  Google Scholar 

  • Wu ZY, Raven PH, Hong DY (eds) (2009) Flora of China (Orchidaceae), vol 25. Science Press and St. Louis: Missouri Botanical Garden Press, Beijing, pp 382–383

    Google Scholar 

  • Xing X, Cui SW, Nie S, Phillips GO, Goff HD, Wang Q (2014) Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): part I. Extraction, purification, and partial structural characterization. Bioact Carbohydr Diet Fibre 4:74–83

    Article  CAS  Google Scholar 

  • Xing X, Cui SW, Nie S, Phillips GO, Goff HD, Wang Q (2015) Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan®): part II. Fine structures of O-acetylated residues. Carbohydr Polym 117:422–433

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Shi D, Li J, Kong Y, Yu Y, Chai G, Hu R, Wang J, Hahn MG, Zhou G (2014) CELLULOSE SYNTHASE-LIKE A2, a glucomannan synthase, is involved in maintaining adherent mucilage structure in Arabidopsis seed. Plant Physiol 164:1842–1856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Wu K, Zeng S, Teixeira da Silva JA, Zhao X, Tian CE, Xia H, Duan J (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genom 14:279

    Article  Google Scholar 

  • Zhao Q, Xie B, Yan J, Zhao F, Xiao J, Yao L, Zhao B, Huang Y (2012) In vitro antioxidant and antitumor activities of polysaccharides extracted from Asparagus officinalis. Carbohydr Polym 87:392–396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China Projects (Grant number 31370365), the Transformation of Agricultural Science and Technology Achievement Fund (Contract number 2013GB24910676), the Forestry Science and Technology Innovation Fund Project of Guangdong province (Project number 2013KJCX014-06), and the Science and Technology Planning Project of Guangdong Province (Project number 2012A020602100).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Duan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Zhang, J., Liu, X. et al. Identification of genes involved in biosynthesis of mannan polysaccharides in Dendrobium officinale by RNA-seq analysis. Plant Mol Biol 88, 219–231 (2015). https://doi.org/10.1007/s11103-015-0316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-015-0316-z

Keywords

Navigation